CSE 326 Data Structures

Dave Bacon

It's the Final Countdown... Dah Dah Dah Dah Dah
Logistics

- Homework 7 will be due Wed, March 7
- Read Chapter 9 of Weiss, Chapter 10.1, 10.3
- Monday: Huffman Coding, Tablet Evaluations, Class Evaluations
- Wednesday: Final Review
- Friday: Games and NP completeness
- **Final:** Thursday March 15, 8:30-10:20 MGH 231
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an *edge with the smallest weight*.

$G=(V,E)$
Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked

2. While there are still unmarked edges
 a. Pick the lowest cost edge \((u, v)\) and mark it
 b. If \(u\) and \(v\) are not already connected, add \((u, v)\) to the MST and mark \(u\) and \(v\) as connected to each other

Doesn’t it sound familiar?
Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it T_K.

Suppose T_K is not minimum:

- Pick another spanning tree T_{min} with lower cost than T_K.
- Pick the smallest edge $e_1=(u,v)$ in T_K that is not in T_{min}.
- T_{min} already has a path p in T_{min} from u to v.
 - Adding e_1 to T_{min} will create a cycle in T_{min}.

Pick an edge e_2 in p that Kruskal’s algorithm considered after adding e_1 (must exist: u and v unconnected when e_1 considered).

- \Rightarrow cost(e_2) \geq cost(e_1).
- \Rightarrow can replace e_2 with e_1 in T_{min} without increasing cost!

Keep doing this until T_{min} is identical to T_K.

\Rightarrow T_K must also be minimal – contradiction!
Single-Source Shortest Path

- Given a graph \(G = (V, E) \) and a single distinguished vertex \(s \), find the shortest weighted path from \(s \) to every other vertex in \(G \).

All-Pairs Shortest Path:

- Find the shortest paths between all pairs of vertices in the graph.
- How?
Analysis

• Total running time for Dijkstra’s:
 \[O(|V|^2 + |E|) \] (linear scan)
 \[O(|V| \log |V| + |E| \log |V|) \] (heaps)

What if we want to find the shortest path from each point to ALL other points?
Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.

$$Fib(N) = Fib(N-1) + Fib(N-2)$$
Dynamic Programming

Simple Example: Calculating the Nth Fibonacci number.

\[\text{Fib}(N) = \text{Fib}(N-1) + \text{Fib}(N-2) \]
Floyd-Warshall

for (int \(k = 1; k \leq V; k++ \))
 for (int \(i = 1; i \leq V; i++ \))
 for (int \(j = 1; j \leq V; j++ \))
 if (\((M[i][k] + M[k][j]) < M[i][j] \))
 \(M[i][j] = M[i][k] + M[k][j] \)

Invariant: After the \(k \)th iteration, the matrix includes the shortest paths for all pairs of vertices \((i,j)\) containing only vertices 1..\(k \) as intermediate vertices.
Initial state of the matrix:

\[
\begin{array}{cccccc}
 & a & b & c & d & e \\
 a & 0 & 2 & \infty & -4 & \infty \\
b & \infty & 0 & -2 & 1 & 3 \\
c & \infty & \infty & 0 & \infty & 1 \\
d & \infty & \infty & \infty & 0 & 4 \\
e & \infty & \infty & \infty & \infty & 0 \\
\end{array}
\]

\[
M[i][j] = \min(M[i][j], M[i][k] + M[k][j])
\]
Floyd-Warshall
Floyd-Warshall - for All-pairs shortest path

Final Matrix Contents
Data Compression: Huffman Coding

10.1.2 in Weiss (p.395)
Data Compression

- **Lossless** compression $X = X'$
- **Lossy** compression $X \neq X'$
- **Compression Ratio** $|X|/|Y|$
 - Where $|X|$ is the # of bits in X.
Lossy Compression

• Some data is lost, but not too much.

Standards:
• JPEG (Joint Photographic Experts Group)
 – stills
• MPEG (Motion Picture Experts Group)
 – Audio and video
• MP3 (MPEG-1, Layer 3)
Lossless Compression

• No data is lost.

Standards:
• Gzip, Unix compress, zip, GIF, Morse code
Lossless Compression of text

ASCII = fixed 8 bits per character
Example: “hello there”
 – 11 characters * 8 bits = 88 bits
Can we encode this message using fewer bits?
Huffman Coding

- Uses *frequencies* of symbols in a string to build a **prefix code**.

- **Prefix Code** – no code in our encoding is a prefix of another code.

<table>
<thead>
<tr>
<th>Letter</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>101</td>
</tr>
<tr>
<td>d</td>
<td>11</td>
</tr>
</tbody>
</table>
Decoding a Prefix Code

Loop
start at root of tree
loop
if bit read = 1 then go right
else, go left
until node is a leaf
Report character found!
Until end of the message
<table>
<thead>
<tr>
<th>Letter</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>101</td>
</tr>
<tr>
<td>d</td>
<td>11</td>
</tr>
</tbody>
</table>

Decode: 1110001011001110
Huffman Trees

Cost of a Huffman Tree containing n symbols

\[C(T) = p_1 \cdot r_1 + p_2 \cdot r_2 + p_3 \cdot r_3 + \ldots + p_n \cdot r_n \]

Where:
\(p_i \) = the probability that a symbol occurs
\(r_i \) = the length of the path from the root to the node
Creating Huffman Trees?

Be Greedy!

\(a^{10} \quad b^{15} \quad c^{12} \quad d^{3} \quad e^{4} \quad f^{13} \quad g^{1}\)