CSE 326 Data Structures

Dave Bacon

Dijkstra’s Algorithm and Minimal Spanning Trees
Logistics

- Project 3 writeup due on Thursday!

- Homework 7 will be due Wed, March 7

- Read Chapter 9 of Weiss
Dijkstra’s Alg: Implementation Optimized

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
 Select the unknown node b with the lowest cost
 Mark b as known
 For each node a adjacent to b
 a’s cost = min(a’s old cost, b’s cost + cost of (b, a))

Running time?
Correctness: The Cloud Proof

Better path to B? No!

Next shortest path from inside the known cloud

The Known Cloud

Source

How does Dijkstra’s decide which vertex to add to the Known set next???

- If path to B is shortest, path to w must be at least as long (or else we would have picked w as the next vertex)
- So any path through w to B cannot be any shorter!
Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:

Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the correct shortest path

Inductive step: Only when we prove the shortest path to some node v (which is not in the cloud) is correct, we add it to the cloud.

When does Dijkstra’s algorithm not work?
The Trouble with Negative Weight Cycles

What’s the shortest path from A to E?

Problem?
Dijkstra’s vs BFS

At each step:
1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

Dijkstra’s Algorithm

At each step:
1) Pick vertex from queue
2) Add it to visited vertices
3) Update queue with neighbors

Breadth-first Search

Some Similarities:
Acyclic Graphs?
Minimum Spanning Trees

Given an undirected graph $G = (V, E)$, find a graph $G' = (V, E')$ such that:
- E' is a subset of E
- $|E'| = |V| - 1$
- G' is connected
- $\sum_{(u,v) \in E'} c_{uv}$ is minimal

G' is a minimum spanning tree.

Applications: wiring a house, power grids, Internet connections
Find the MST
Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!
Prim’s algorithm

Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. Pick the *edge with the smallest weight.*
Prim’s Algorithm for MST

A node-based greedy algorithm
Builds MST by greedily adding nodes

1. Select a node to be the “root”
 • mark it as known
 • Update cost of all its neighbors

2. While there are unknown nodes left in the graph
 a. Select an unknown node b with the smallest cost from some known node a
 b. Mark b as known
 c. Add (a, b) to MST
 d. Update cost of all nodes adjacent to b
Find MST using Prim’s

<table>
<thead>
<tr>
<th>V</th>
<th>Kwn</th>
<th>Distance</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start with V₁

Order Declared Known: V₁
Prim’s Algorithm Analysis

Running time:

Same as Dijkstra’s: $O(|E| \log |V|)$

Correctness:

Proof is similar to Dijkstra’s
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an **edge with the smallest weight**.

\[G=(V,E) \]
Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked

2. While there are still unmarked edges
 a. Pick the lowest cost edge \((u, v)\) and mark it
 b. If \(u\) and \(v\) are not already connected, add \((u, v)\) to the MST and mark \(u\) and \(v\) as connected to each other

Doesn’t it sound familiar?
void Graph::kruskal(){
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);

 while (edgesAccepted < NUM_VERTICES - 1){
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset){
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
 }
}
Find MST using Kruskal’s

- Now find the MST using Prim’s method.
- Under what conditions will these methods give the same result?
Kruskal’s Algorithm:
Correctness

It clearly generates a spanning tree. Call it T_K.

Suppose T_K is not minimum:

Pick another spanning tree T_{min} with lower cost than T_K.
Pick the smallest edge $e_1=(u,v)$ in T_K that is not in T_{min}.

T_{min} already has a path p in T_{min} from u to v.
\Rightarrow Adding e_1 to T_{min} will create a cycle in T_{min}.

Pick an edge e_2 in p that Kruskal’s algorithm considered after adding e_1 (must exist: u and v unconnected when e_1 considered).
\Rightarrow cost(e_2) \geq cost(e_1).
\Rightarrow can replace e_2 with e_1 in T_{min} without increasing cost!

Keep doing this until T_{min} is identical to T_K.
\Rightarrow T_K must also be minimal – contradiction!
Single-Source Shortest Path

- Given a graph $G = (V, E)$ and a single distinguished vertex s, find the shortest weighted path from s to every other vertex in G.

All-Pairs Shortest Path:

- Find the shortest paths between all pairs of vertices in the graph.
- How?
Analysis

• Total running time for Dijkstra’s:
 \(O(|V|^2 + |E|)\) \hspace{1cm} \text{(linear scan)}
 \(O(|V| \log |V| + |E| \log |V|)\) \hspace{1cm} \text{(heaps)}

What if we want to find the shortest path from each point to ALL other points?
Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.

\[\text{Fib}(N) = \text{Fib}(N-1) + \text{Fib}(N-2) \]
Floyd-Warshall

For (int k = 0; k < n; k++)
 For (int i = 0; i < n; i++)
 For (int j = 0; j < n; j++)
 \[M[i][j] = \min(M[i][j], M[i][k] + M[k][j]) \]
Initial state of the matrix:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>2</td>
<td>∞</td>
<td>-4</td>
<td>∞</td>
</tr>
<tr>
<td>b</td>
<td>∞</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

$M[i][j] = \min(M[i][j], M[i][k] + M[k][j])$
Floyd-Warshall

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Floyd-Warshall - for All-pairs shortest path

Final Matrix Contents

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Transitive Closure

The transitive closure of a graph \(G = (V, E) \) is the graph \(G^* = (V, E^*) \) where

\[
E^* = \{ (i, j) : \text{there is a path from vertex } i \text{ to vertex } j \text{ in } G \}
\]

“All-pairs reachability”