CSE 326 Data Structures

Dave Bacon

Graphs
Logistics

• Turn in Homework 6...
• Project 3 code due on Monday!
• Project 3 writeup due on Thursday!
• Homework 7 will be due....
• Read Chapter 9 of Weiss
• Complain about the class on the survey on the webpage!
Graph... ADT?

- Not quite an ADT... operations not clear
- A formalism for representing relationships between objects

\[
\text{Graph } g = (V, E)
\]

- Set of vertices:
 \[
 V = \{v_1, v_2, \ldots, v_n\}
 \]
- Set of edges:
 \[
 E = \{e_1, e_2, \ldots, e_m\}
 \]
 where each \(e_i \) connects two vertices \((v_{i1}, v_{i2})\)
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be inlined.
Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells) “adjacency matrix”
2. List of vertices each with a list of adjacent vertices “adjacency list”

Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Vertices and edges may be labeled
Representation 1: Adjacency Matrix

A $|V| \times |V|$ array in which an element (u, v) is true if and only if there is an edge from u to v.
Representation

- adjacency **matrix**:

\[
A[u][v] = \begin{cases}
\text{weight} & \text{if } (u, v) \in E \\
0 & \text{if } (u, v) \notin E
\end{cases}
\]
Representation

- adjacency list:
Representation 2: Adjacency List

A \mathcal{V}-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices.

space requirements: runtime:
Some Applications: Moving Around Washington

What’s the *shortest way* to get from Seattle to Pullman?

Edge labels:
Some Applications: Moving Around Washington

What’s the \textit{fastest way} to get from Seattle to Pullman?
Edge labels:
Some Applications: Reliability of Communication

If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?
Some Applications: Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to 1st and University using Metro?
Application: Topological Sort

Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?
Valid Topological Sorts:
Topological Sort: Take One

1. Label each vertex with its \textit{in-degree} (\# of inbound edges)
2. \textbf{While} there are vertices remaining:
 a. Choose a vertex v of \textit{in-degree} zero; output v
3. Reduce the in-degree of all vertices adjacent to v
 a. Remove v from the list of vertices

\textbf{Runtime:}
void Graph::topsort(){
 Vertex v, w;

 labelEachVertexWithItsInDegree();

 for (int counter=0; counter < NUM_VERTICES; counter++){
 v = findNewVertexOfDegreeZero();

 v.topologicalNum = counter;
 for each w adjacent to v
 w.indegree--;
 }
}
Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
 a. $v = Q$.dequeue; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. If new in-degree of any such vertex u is zero
 Q.enqueue(u)

Note: could use a stack, list, set, box, … instead of a queue

Runtime:
void Graph::topsort() {
 Queue q(NUM_VERTICES); int counter = 0; Vertex v, w;
labelEachVertexWithItsIn-degree();

 q.makeEmpty();
 for each vertex v
 if (v.indegree == 0)
 q.enqueue(v);

 while (!q.isEmpty()){
 v = q.dequeue();
 v.topologicalNum = ++counter;
 for each w adjacent to v
 if (--w.indegree == 0)
 q.enqueue(w);
 }
}

Runtime:
Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 - Must mark visited vertices so you do not go into an infinite loop!

- Either can be used to determine connectivity:
 - Is there a path between two given vertices?
 - Is the graph (weakly) connected?

- Which one:
 - Uses a queue?
 - Uses a stack?
 - Always finds the shortest path (for unweighted graphs)?
Graph Connectivity

Undirected graphs are *connected* if there is a path between any two vertices

Directed graphs are *strongly connected* if there is a path from any one vertex to any other

Directed graphs are *weakly connected* if there is a path between any two vertices, *ignoring direction*

A *complete* graph has an edge between every pair of vertices
The Shortest Path Problem

Given a graph G, edge costs $c_{i,j}$, and vertices s and t in G, find the shortest path from s to t.

For a path $p = v_0 \ v_1 \ v_2 \ \ldots \ \ v_k$

- **unweighted length** of path $p = k$ (a.k.a. length)

- **weighted length** of path $p = \sum_{i=0..k-1} c_{i,i+1}$ (a.k.a. cost)

Path length equals path cost when?
Single Source Shortest Paths (SSSP)

Given a graph G, edge costs $c_{i,j}$, and vertex s, find the shortest paths from s to all vertices in G.

– Is this harder or easier than the previous problem?
All Pairs Shortest Paths (APSP)

Given a graph G and edge costs $c_{i,j}$, find the shortest paths between all pairs of vertices in G.

- Is this harder or easier than SSSP?

- Could we use SSSP as a subroutine to solve this?
Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
- ...

...
Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...
SSSP: Unweighted Version

Ideas?
```cpp
void Graph::unweighted (Vertex s) {
    Queue q(NUM_VERTICES);
    Vertex v, w;
    q.enqueue(s);
    s.dist = 0;

    while (!q.isEmpty()) {
        v = q.dequeue();
        for each w adjacent to v
            if (w.dist == INFINITY) {
                w.dist = v.dist + 1;
                w.path = v;
                q.enqueue(w);
            }
    }
}
```

total running time: $O(___)$
Weighted SSSP: The Quest For Food

Can we calculate shortest distance to all nodes from Allen Center?
Dijkstra, Edsger Wybe

Legendary figure in computer science; was a professor at University of Texas.

Supported teaching introductory computer courses without computers (pencil and paper programming)

Supposedly wouldn’t (until very late in life) read his e-mail; so, his staff had to print out messages and put them in his box.

E.W. Dijkstra (1930-2002)

1972 Turing Award Winner, Programming Languages, semaphores, and ...
CSE 326 Data Structures

Dave Bacon

Shortest Path and Djistra’s Algorithm
Logistics

- Project 3 code due tonight!
- Project 3 writeup due on Thursday!
- Homework 7 will be due Wed, March 7
- Read Chapter 9 of Weiss
Application: Topological Sort

Given a directed graph, \(G = (V, E) \), output all the vertices in \(V \) such that no vertex is output before any other vertex with an edge to it.

Is the output unique? NO
Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
 a. $v = Q.dequeue();$ output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. If new in-degree of any such vertex u is zero
 $Q.enqueue(u)$

Note: could use a stack, list, set, box, ... instead of a queue

Runtime: $O(|V|+|E|)$
Single Source Shortest Paths (SSSP)

Given a graph G, edge costs $c_{i,j}$, and vertex s, find the shortest paths from s to all vertices in G.
SSSP: Unweighted Version

Ideas?

Given G

Source: s

$c_{ij} = 1$ iff $(i, j) \in E$

$= 0$ otherwise

Use BFS
void Graph::unweighted (Vertex s) {
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;

 while (!q.isEmpty()) {
 v = q.dequeue();
 for each w adjacent to v
 if (w.dist == INFINITY) {
 w.dist = v.dist + 1;
 w.path = v;
 q.enqueue(w);
 }
 }
}

\textbf{total running time}: O(\quad)
Weighted SSSP: The Quest For Food

Can we calculate shortest distance to all nodes from Allen Center?
Dijkstra, Edsger Wybe

Legendary figure in computer science; was a professor at University of Texas.

Supported teaching introductory computer courses without computers (pencil and paper programming)

Supposedly wouldn’t (until very late in life) read his e-mail; so, his staff had to print out messages and put them in his box.

“Go To Statement Considered Harmful”, 1972

E.W. Dijkstra (1930-2002)

http://www.cs.utexas.edu/users/EWD
Dijkstra, Edsger Wybe

Three Golden Rules for Successful Scientific Research

1st Rule:
"Raise your quality standards as high as you can live with, avoid wasting your time on routine problems, and always try to work as closely as possible at the boundary of your abilities. Do this, because it is the only way of discovering how that boundary should be moved forward."

2nd Rule:
"We all like our work to be socially relevant and scientifically sound. If we can find a topic satisfying both desires, we are lucky; if the two targets are in conflict with each other, let the requirement of scientific soundness prevail."

3rd Rule:
"Never tackle a problem of which you can be pretty sure that (now or in the near future) it will be tackled by others who are, in relation to that problem, at least as competent and well-equipped as you."
Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
- Finished or known vertices
 - Shortest distance has been computed
- Unknown vertices
 - Have tentative distance
Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances
Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
 Select an unknown node b with the lowest cost
 Mark b as known
 For each node a adjacent to b
 a’s cost = $\min(a$’s old cost, b’s cost + cost of (b, a))
void Graph::dijkstra(Vertex s) {
 Vertex v, w;

 // Initialize s.dist = 0 and set dist of all other vertices to infinity

 while (there exist unknown vertices, find the one b with the smallest distance) {
 b.known = true;

 for each a adjacent to b
 if (!a.known)
 if (b.dist + Cost_ba < a.dist) {
 decrease(a.dist to = b.dist + Cost_ba);
 a.path = b;
 }
 }
}
Order declared Known:
0 known
3 known

<table>
<thead>
<tr>
<th>V</th>
<th>Kwn</th>
<th>Dist</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td>F</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>v1</td>
<td>F</td>
<td>∞</td>
<td>6</td>
</tr>
<tr>
<td>v2</td>
<td>F</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>v3</td>
<td>F</td>
<td>∞</td>
<td>4</td>
</tr>
<tr>
<td>v4</td>
<td>F</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>v5</td>
<td>F</td>
<td>∞</td>
<td>4</td>
</tr>
<tr>
<td>v6</td>
<td>F</td>
<td>∞</td>
<td>6</td>
</tr>
</tbody>
</table>
Dijkstra’s Alg: Implementation

Unoptimized

Array

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown nodes left in the graph

Select the unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

a’s cost = $\min(a$’s old cost, b’s cost + cost of (b, a))

$E* O(1)$

Running time: $O(|V|^2 + VH)$
Dijkstra’s Alg: Implementation Optimized

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
 Select the unknown node b with the lowest cost
 Mark b as known
 For each node a adjacent to b
 a's cost = min(a's old cost, b's cost + cost of (b, a))

$O(V \log V + E \log V)$

Running time?
Dijkstra’s Algorithm: a Greedy Algorithm

Greedy algorithms always make choices that *currently* seem the best

- Short-sighted – no consideration of long-term or global issues
- Locally optimal - does not always mean globally optimal!!
Global and Local Optimum
Greedy

0.25 0.10 0.05 0.01

0.12

3 * 0.25
0.07 left
1 * 0.05
2 * 0.01

0.15

1 * 0.12
3 * 0.03

min #coins
Correctness of Dijkstra's

Intuition for correctness:

- shortest path from source vertex to itself is 0
- cost of going to adjacent nodes is at most edge weights
- cheapest of these must be shortest path to that node
- update paths for new node and continue picking cheapest path
Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next???

- If path to B is shortest, path to w must be at least as long (or else we would have picked w as the next vertex)
- So any path through w to B cannot be any shorter!
Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:

Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the correct shortest path

Inductive step: Only when we prove the shortest path to some node v (which is not in the cloud) is correct, we add it to the cloud

When does Dijkstra’s algorithm not work?
Dijkstra’s vs BFS

At each step:
1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

At each step:
1) Pick vertex from queue
2) Add it to visited vertices
3) Update queue with neighbors

Dijkstra’s Algorithm

Breadth-first Search

Some Similarities:
The Trouble with Negative Weight Cycles

What’s the shortest path from A to E?

Problem?
Acyclic Graphs?
Minimum Spanning Trees

Given an undirected graph \(G = (V, E) \), find a graph \(G' = (V, E') \) such that:
- \(E' \) is a subset of \(E \)
- \(|E'| = |V| - 1 \)
- \(G' \) is connected
- \(\sum_{(u,v) \in E'} c_{uv} \) is minimal

\(G' \) is a minimum spanning tree.

Applications: wiring a house, power grids, Internet connections
Find the MST

Student Activity
Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!