CSE 326 Data Structures

Dave Bacon

Graphs
Logistics

• Turn in Homework 6...

• Project 3 code due on Monday!
• Project 3 writeup due on Thursday!

• Homework 7 will be due....

• Read Chapter 9 of Weiss

• Complain about the class on the survey on the webpage!
Graph... ADT?

- Not quite an ADT... operations not clear

- A formalism for representing relationships between objects

 \[
 \text{Graph } G = (V, E)
 \]

 - Set of vertices:
 \[
 V = \{v_1, v_2, \ldots, v_n\}
 \]

 - Set of edges:
 \[
 E = \{e_1, e_2, \ldots, e_m\}
 \]
 where each \(e_i \) connects two vertices \((v_{i1}, v_{i2}) \)

\[
V = \{\text{Han, Leia, Luke}\}
\]
\[
E = \{(\text{Luke, Leia}),
 (\text{Han, Leia}),
 (\text{Leia, Han})\}
\]
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be inlined.
Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells) “adjacency matrix”
2. List of vertices each with a list of adjacent vertices “adjacency list”

Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Vertices and edges may be labeled
Representation 1: Adjacency Matrix

A \(|V| \times |V|\) array in which an element \((u, v)\) is true if and only if there is an edge from \(u\) to \(v\).

Space requirements:
Runtime:
Representation

- **adjacency matrix:**

\[
A[u][v] = \begin{cases}
\text{weight} & \text{if } (u, v) \in E \\
0 & \text{if } (u, v) \notin E
\end{cases}
\]
Representation

• adjacency list:

[Diagram of a graph with nodes and edges]
Representation 2: Adjacency List

A $|V|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices.

Space requirements:

Runtime:
Some Applications: Moving Around Washington

What’s the *shortest way* to get from Seattle to Pullman?

Edge labels:
Some Applications:
Moving Around Washington

What’s the *fastest way* to get from Seattle to Pullman?
Edge labels:
Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?
Some Applications: Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to 1st and University using Metro?
Application: Topological Sort

Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?
Valid Topological Sorts:
Topological Sort: Take One

1. Label each vertex with its \textit{in-degree} (\# of inbound edges)

2. \textbf{While} there are vertices remaining:
 a. Choose a vertex \(v \) of \textit{in-degree zero}; output \(v \)

3. Reduce the in-degree of all vertices adjacent to \(v \)
 a. Remove \(v \) from the list of vertices

\textbf{Runtime}:
void Graph::topsort()
{
 Vertex v, w;

 labelEachVertexWithItsInDegree();

 for (int counter=0; counter < NUM_VERTICES; counter++)
 {
 v = findNewVertexOfDegreeZero();

 v.topologicalNum = counter;
 for each w adjacent to v
 w.indegree--;
 }
}
Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
 a. $v = Q$.dequeue; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. If new in-degree of any such vertex u is zero
 Q.enqueue(u)

Note: could use a stack, list, set, box, ... instead of a queue

Runtime:
void Graph::topsort()
{
 Queue q(NUM_Vertices); int counter = 0; Vertex v, w;
 labelEachVertexWithItsIn-degree();

 q.makeEmpty();
 for each vertex v
 if (v.indegree == 0)
 q.enqueue(v);

 while (!q.isEmpty()){
 v = q.dequeue();
 v.topologicalNum = ++counter;
 for each w adjacent to v
 if (--w.indegree == 0)
 q.enqueue(w);
 }
}

Runtime:
Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 - Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
 - Is there a path between two given vertices?
 - Is the graph (weakly) connected?
- Which one:
 - Uses a queue?
 - Uses a stack?
 - Always finds the shortest path (for unweighted graphs)?
Graph Connectivity

Undirected graphs are *connected* if there is a path between any two vertices.

Directed graphs are *strongly connected* if there is a path from any one vertex to any other.

Directed graphs are *weakly connected* if there is a path between any two vertices, *ignoring direction*.

A *complete* graph has an edge between every pair of vertices.
The Shortest Path Problem

Given a graph G, edge costs c_{ij}, and vertices s and t in G, find the shortest path from s to t.

For a path $p = v_0 \ v_1 \ v_2 \ \ldots \ \ v_k$

- *unweighted length* of path $p = k$ (a.k.a. *length*)

- *weighted length* of path $p = \sum_{i=0..k-1} c_{i,i+1}$ (a.k.a. *cost*)

Path length equals path cost when ?
Single Source Shortest Paths (SSSP)

Given a graph G, edge costs $c_{i,j}$, and vertex s, find the shortest paths from s to all vertices in G.

- Is this harder or easier than the previous problem?
All Pairs Shortest Paths (APSP)

Given a graph G and edge costs $c_{i,j}$, find the shortest paths between all pairs of vertices in G.

- Is this harder or easier than SSSP?

- Could we use SSSP as a subroutine to solve this?
Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
- ...
Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...
SSSP: Unweighted Version

Ideas?
void Graph::unweighted (Vertex s) {
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;

 while (!q.isEmpty()) {
 v = q.dequeue();
 for each w adjacent to v
 if (w.dist == INFINITY) {
 w.dist = v.dist + 1;
 w.path = v;
 q.enqueue(w);
 }
 }
}

total running time: $O(______)$
Weighted SSSP: The Quest For Food

Can we calculate shortest distance to all nodes from Allen Center?
Dijkstra, Edsger Wybe

Legendary figure in computer science; was a professor at University of Texas.

Supported teaching introductory computer courses without computers (pencil and paper programming)

Supposedly wouldn’t (until very late in life) read his e-mail; so, his staff had to print out messages and put them in his box.

1972 Turing Award Winner, Programming Languages, semaphores, and …