CSE 326 Data Structures

Dave Bacon

Sorting

Logistics

Survey on main web page!

Homework 6 (due on Friday)
Project 3. Project 3. Project 3.

• Reading: finish Weiss <u>Chapter 7</u>, start <u>Chapter 9</u>

Sorting: The Big Picture

Given *n* comparable elements in an array. sort them in an increasing (or decreasing) order. Comparison

lower bound:

 $\Omega(n \log n)$

Simple

 $O(n^2)$

algorithms:

Fancier

algorithms:

 $O(n \log n)$

Bucket sort Radix sort

Specialized

algorithms:

4 O(n)

External sorting

Handling

huge data

sets

Insertion sort Heap sort Selection sort Merge sort Ouick sort Bubble sort Shell sort

How fast can we sort?

 Heapsort, Mergesort, and Quicksort all run in O(N log N) <u>best</u> case running time

Can we do any better?
No, if the basic action is a comparison.

Sorting Model

- Recall our basic assumption: we can <u>only</u> <u>compare two elements at a time</u>
- we can only reduce the possible solution space by half each time we make a comparison

 Suppose you are given N elements
- Assume no duplicates 4,6,6,6,...

 How many possible orderings can you get?
 - How many possible orderings can you get?
 Example: a, b, c (N = 3)

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a) - 6 orderings = 3.2.1 = 3! (ie. "3 factorial")
 - All the possible permutations of a set of 3 elements.
- For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice

node-so of possible orderings

Binary trec

Lower bound on Height

A binary tree of height h has at most how many leaves?

A binary tree with L leaves has height at least LE2^M.

log(N!) is $\Omega(NlogN)$

log AB=log A+logB $log(N!) = log(N \cdot (N-1) \cdot (N-2) \cdot \cdot \cdot (2) \cdot (1))$

ast the element
$$N = \log N$$
. $\geq \log N$

$$\geq \frac{N}{2} \log \frac{N}{2}$$

 $=\Omega(N\log N)$

$$\geq \frac{N}{2} \log \frac{N}{2}$$

$$\geq \frac{N}{2} (\log N - \log 2) = \frac{N}{2} \log N - \frac{N}{2}$$

$$\geq \log N + \log(N-1) + \log(N-2) + \dots + \log \frac{N}{2}$$

$$= \log N + \log(N-1) + \log(N-2) + \dots + \log 2 + \log 1$$

$$\geq \log N + \log(N-1) + \log(N-2) + \dots + \log \frac{N}{2}$$

$$\cdot + \log \frac{N}{2}$$

$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is Ω(N log N)
- Can we do better if we don't use comparisons?

BucketSort (aka BinSort)

If all values to be sorted are *known* to be between 1 and *K*, create an array count of size *K*, **increment** counts while traversing the input,

and finally output the result.

BucketSort Complexity: O(n+K) K=1000 (4+1000)

 Case 1: K is a constant BinSort is linear time

 Case 2: K is variable ← k → f(n) Not simply linear time

- ???

1)/4+2321

Case 3: K is constant but large (e.g. 2³²)

Fixing impracticality: RadixSort

Radix = "The base of a number system"
 We'll use 10 for convenience, but could be anything

 Idea: BucketSort on each digit, least significant to most significant (lsd to msd)

Radix Sort Example (1st pass)

Input data
478
537
9
721
3
38

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)

Radix Sort Example (3rd pass)

After 2 nd pass				by	ucket / 100' git						After 3 rd pa
721	0	1	2	3	4	5	6	7	8	9	
123 537 38 67 478	003 009 038 067	<u>1</u> 23			<u>4</u> 78	<u>5</u> 37		721			38 67 123 478 537 721

Invariant: after k passes the low order k digits are sorted.

BucketSort on msd:

Radixsort: Complexity

```
• How many passes?

\rho = \log \mu \left( \text{ max number} \right)

• How much work per pass?

O(n + k)

• Total time?

O(\rho(n + k))

• Conclusion?
```

In practice

MergeSort/QuickSort

RadixSort only good for large number of elements with relatively small values
Hard on the cache compared to

Internal versus External Sorting • Need sorting algorithms that minimize disk/tape

access time

• External sorting – Basic Idea:

 Load chunk of data into RAM, sort, store this "run" on disk/tape
 Use the Merge routine from Mergesort to merge

Use the Merge routine from Mergesort to merge runs
 Repeat until you have only one run (one sorted)

chunk)

- Text gives some examples

Graphs

Chapter 9 in Weiss

Oraphi

Graph... ADT?

· Not quite an ADT... operations not clear

· A formalism for representing

relationships between objects

Graph G = (V, E)- Set of vertices $V = \{v_1, v_2, ..., v_n\}$ – Set of edges: <</p>

 $E = \{e_1, e_2, ..., e_n\}$ where each e, connects two vertices (v,1,v,2)

(Han. Leia. Luke) $E = \{(Luke, Leia).$ (Han. Leia). (Leia, Han) }

Graph Definitions

In directed graphs, edges have a specific direction:

In *undirected* graphs, they don't (edges are two-way):

 \mathbf{v} is adjacent to \mathbf{u} if $\underline{(\mathbf{u},\mathbf{v})} \in \mathbf{E}$

More Definitions: Simple Paths and Cycles

A simple path repeats no vertices (except that the first can be the last):

p = {Seattle, Salt Lake City, San Francisco, Dallas} p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A *cycle* is a path that starts and ends at the same node: p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

Trees as Graphs

- · Every tree is a graph!
- Not all graphs are

trees!

- A graph is a tree if
 - There are no cycles (directed or undirected) - There is a path from

the root to every node

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed)

As CLC by Program callgraph is a DAG, then all procedure calls can be inlined

Graph Representations

Han

- List of vertices + list of edges
- 2-D matrix of vertices (marking edges in the cells)
 "adiacency matrix"
 - List of vertices each with a list of adjacent vertices "adjacency list"
- Things we might want to do:
 iterate over vertices
- iterate over vertice
 iterate over edges
- · iterate over vertices adj. to a vertex

Vertices and edges may be labeled

check whether an edge exists

Representation 1: Adjacency Matrix

A | V | x | V | array in which an element (u,v) is true if and only if there is an edge from u to v

	Han	Luke	Leia
Han			
Luke			
Leia			