CSE 326 Data Structures

Dave Bacon

Sorting

Logistics
* Survey on main web page! owel

* Homework 6€:|ue on Friday) ey

* Project 3, Project 3, Project 3.‘/

* Reading: finish Weiss Chapter 7, start
Chapter 9

Sorting: The Big Picture

Given n comparable elements in an array,
sort them in an increasing (or decreasing)
order.
Simple Fancier
algorithms: algorithms:
O(n?) O(n log n)

Comparison Specialized Handling
ower bound: algorithms: huge data
Q(nlog n) T0m™ sets

Insertion sort Heap sort Bucket sort Extemal
Selection sort Merge sort Radix sort sorting

Bubble sort Quick sort
Shell sort .

How fast can we sort?

* Heapsort, Mergesort, and Quicksort all run
in O(N log N) best case running time

» Can we do any better?
* No, if the basic action is a comparison.

Sorting Model

Recall our basic assumption: we can only
compare two elements at a time

— we can only reduce the possible solution space by
half each time we make a comparison

Suppose you are given N elements
— Assume no duplicates ﬂ,"/ e, ¢, -

How many possible orderings can you get?
— Example: a, b, c (N=3)

Permutations

How many possible orderings can you get?

— Example:a,b,c (N=3

—(abc),(acb),(bac),(bca) (cab),(cba)

— 6 orderings = 3.2.1 = 3! (ie, “3 factorial”)

— All the possible permutations of a set of 3 elements

For N elements

— N choices for the first position, (N-1) choices for the
second position, ..., (2) choices, 1 choice 1

= N(N-1)(N-2)---(2)(1)=

N! possible orderings
VW) -~= p1 7 "y

ﬁ'l'mry Yrec

t‘#cﬂi—talﬁviba

a<bec
c<a<b,
b<a<c
a<b<c —
c<a<b
a<c<b
a<b<c c<a<b
acccb mm——
b<s///\\kjr \ewes
a<bec a<c<b

ordering

Node— g o pFSible oy ings
Decision Tree

b<c<a,
a<c<b,
c<b<a

T

b<c<a
b<a<c
c<b<a

b<://\\3>r

b<c<a c<b<a

b<c<a b<a<c

The leaves contain all the possible orderings of a, b, ¢

Lower bound on Height

<A binht h has at most how many Iea\;z;
AR Z qh n=o L&\
SRR

« A binary tree with L leaves has height at Ieast.cLﬁ’Z‘H

e

« The decision tree has how many leaves:

« So the decision tree has height:
h> (og4 1\ e— \Woisk case

log(N!) is Q(NlogN)
(0g A= log A+ log$ oo
log(N) = log(N-(V-D)-(N-2--@)-(0) £

=1log N +log(N —1) +log(N —2) +---+log 2 +log1
st N/ tem ==
o, 2logN+log(N71)+log(N72)+--»+log%

‘mmg sdected N. N
temsis > logN'? > jog
= 2 ¢ 2

2E(IOnglog2) :glongg
=Q(NlogN)

Q(N log N)

* Run time of any comparison-based
sorting algorithm is (N log N)

» Can we do better if we don’t use
comparisons?

Qmperisons,
qlb

BucketSort (aka BinSort)

If all values to be sorted are known to be
between 1 and K| create an array count of size
K, increment counts while traversing the input,
and finally output the result.

Example K=5.
count array
13 XK
2 \

3 X2
4 X2
5 |2K¥

Input = (5,1,3,4,3,2,1,1,5,4,
sansis T

o A 2,63/ Y4,

wchal
y

)5

ggh Runngg time to sort n items? '&‘;,L

O tK)

BucketSort Complexity: O(n+K)

£=(000 (i (€09)

Case 1: Kis a constant

— BinSort is linear time

Case 2: K is variablea— K —» #(n)

— Not simply linear time

Case 3: K is constant but large (e.g.@
—22?

Dl 2™ 3L it Amd.

Fixing impracticality: RadixSort

Radix = “The base of a number system”

—We'll use 10 for convenience, but could be
anything

Idea: BucketSort on each digit,
least significant to most significant
(Isd to msd)

Radix Sort Example (15t pass)

Bucket sort
by 1's digit
Input data After 15 pass

478
537
9 o
7216~
3
38
123

67 ;’_/__J

This example uses B=10 and base 10
digits for simplicity of demonstration
Larger bucket counts should be used
in an actual implementation

Radix Sort Example (29 pass)

Bucket sort

After 1%t pass by 10's After 2M pass

721 digit 3

3 9

129 o[1]2]s]a]s5]s]7[5]° 721

537 [721 o |48 123

&7 0 12 537

478 38

38 67

Radix Sort Example (3 pass)

- Bucket sort a
After 2M pass by 100 After 319 pass

3 digit 3

9 9

721 o123]4a]5]s]7[5]>° 8

123 003 [123 E 1 67

537 009 123

38 038 478

67 o 537

478 721

Invariant: after k passes the low order k digits are sorted

.
RadixSort

* Input:126, 328, 636, 341, 416, 131,
BucketSort on Isd: 30

BucketSort on next-higher digit:

BucketSort on msd:

Radixsort: Complexity

How many passes?

P= 102 (aw umber
How much work per pass?

O(n+ R\
Totbal tim(e’? L\)

ny 32
Conclll‘f;ion’? loﬂ\?’ =232
is large

In practice

— RadixSort only good for large number of elements
with relatively small values <

— Hard on the cache compared to
MergeSort/QuickSort

Internal versus External

Sorting
* Need sorting algorithms that minimize disk/tape

access time
+ External sorting — Basic Idea:

— Load chunk of data into RAM, sort, store this “run”
on disk/tape

— Use the Merge routine from Mergesort to merge
runs

— Repeat until you have only one run (one sorted
chunk)

— Text gives some examples

Graphs

Chapter 9 in Weiss

Graph... ADT? Tar

* Not quite an ADT...
operations not clear

objects

Graph 6 = (v,E)

- Set ofve’rﬁms:(
Vo =A{v,,v,,.,V,}

— Set of edges: €~

E = {e;,8;,.,8,}

where each e, connects two

vertices (vy;,vi,)

A formalism for representing
relationships between

Darth Vede

Han wh&e

Leia

{Han, Leia, Luke}
{(Luke, Leia),
(Han, Leia),
(Leia, Han)}

W<

Graph Definitions

In directed graphs, edges have a specific direction:
Han Luke

Leia
In undirected graphs, they don't (edges are two-way):
Han Luke

Leia
vis adjacenttouif (u,v) € E

More Definitions: @
Simple Paths and Cycles

A sélmple f;aih repeats no vertices (except that the first can
e the |a:
= {Seattle, Salt Lake City, San Francisco, Dallas}

p = {Seattle, Salt Lake City, Dallas, San Francisco,
Seattle}

A cycle is a path that starts and ends at the same node:
= {Seattle, Salt Lake City, Dallas, San Francisco,
Seattle}

p = {Seattle, Salt Lake City, Seattle, San Francisco,
Seattle}

A simple cycle is a cycle that repeats no vertices except
that the first vertex is also the last (in undirected graphs,
no edge can be repeated)

Trees as Graphs o\—gy

* Every tree is a graph! @)
* Not all graphs are

trees! () © f%
ONONOR

A graph is a tree if

—There are no cycles

(directed or undirected)

—There is a path from
the root fo every node
—_—

Directed Acyclic Graphs (DAGs)

DAGs are main()
directed graphs
with no mult ()
(directed)
Asﬁ%.cfﬁmgram call-
graph is a DAG, then all
procedure calls can be in- read ()
lined access ()

add ()

Graph Representations

Han Luke

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the ceIIs)

“adjacency matrix” «—

2. List of vertices each with a list of adjacent vertices

Things we might want to do:

“adjacency list’ €

Vertices and edges

iterate over vertices may be labeled

iterate over edges
iterate over vertices adj. to a vertex
check whether an edge exists

Representation 1: Adjacency
Matrix
A |V| x |Vv]| array in which an element

(u,v) istrue if and only if there is an
edge fromutov Han Luke Leia

space requirements: runtime:

