An AVL Tree
CSE 326 Data Structures

CSE 326 : Dave Bacon

Priority Queues : Binomial Queues, Binary Search Trees, AVL Trees
Logistics

- Updated Due Dates
 - Project 2, Phase A, due Friday, January 26
 - Homework 3, due Monday, January 29 in class

- Project 2A
 - Generic Arrays in Java
Amortized Analysis

• Grow an Array when full…
 – Option 1: increase array by constant c
 – Option 2: increase array by doubling size

• Analyze n push operations…Amortized time?

Option 1: $k=n/c$ replaces
 \[O(n+c+2c+3c+\ldots+kc) = O(n+c(kk-1)/2) = O(n^2) \]

Option 2: $k=\log n$ replaces
 \[O(n+c+2c+4c+\ldots+2^kc) = O(n+c(2^{k+1}-1)) = O(n) \]
Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 0 to maxheight {
 a. $m \leftarrow$ total number of B_k’s in the two BQs
 b. if $m=0$: continue;
 c. if $m=1$: continue;
 d. if $m=2$: combine the two B_k’s to form a B_{k+1}
 e. if $m=3$: retain one B_k and combine the other two to form a B_{k+1}

Claim: When this process ends, the forest has at most one tree of any height
Example: Binomial Queue Merge

H1: 21 1 -1 7 2 1 3 8 11 5 6

H2: 3 5 9 6 7
Example: Binomial Queue Merge

H1:

```
  1  -1
  7  2  1  3
  8  11 5  6
```

H2:

```
  3
  21
  9  6
  7
```
Example: Binomial Queue Merge

H1:

H2:
Example: Binomial Queue Merge

H1:

H2:
Example: Binomial Queue Merge

H1:

H2:

-1
 2 1 3
 8 11 5
 6
 1
 7 3 5
 21 9 6
 7
Example: Binomial Queue Merge

H1:

H2:

Diagram with nodes labeled with numbers -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21.
Complexity of Merge

Constant time for each height
Max height is: \(\log n \)

\[\implies \] worst case running time = \(\Theta(\log n) \)
Insert in a Binomial Queue

Insert(x): Similar to leftist or skew heap

Worst case complexity: same as merge
\[O(\log n) \]

Average case complexity: \[O(1) \]

Why?? Hint: Think of adding 1 to 1101

\[
\begin{array}{c}
101110110 \\
+ 11111100 \\
\hline
101111100
\end{array}
\]

\[\text{must not} \]
deleteMin in Binomial Queue

Similar to leftist and skew heaps....

\[
\text{find min } \log n
\]

binomial forest
deleteMin: Example

find and delete smallest root

merge BQ (without the shaded part) and BQ'
deleteMin: Example

Result:

runtime: $O(\log n)$

Bye bye
Chapter 6.
Tree Calculations

Recall: height is max number of edges from root to a leaf

Find the height of the tree...

\[
\text{height}(t) = 1 + \max \text{height}(t, \text{left}), \text{height}(t, \text{right})
\]

runtime:

\[O(n)\] for \(n\) nodes
Tree Calculations Example

How high is this tree?
A traversal is an order for visiting all the nodes of a tree.

Three types:
- **Pre-order**: Root, left subtree, right subtree
- **In-order**: Left subtree, root, right subtree
- **Post-order**: Left subtree, right subtree, root

\[2 \times 4 + 5 \]

(an expression tree)
void traverse(BNode t) {
 if (t != NULL) {
 traverse(t.left);
 print t.element;
 traverse(t.right);
 }
}
Binary Trees

- Binary tree is
 - a root
 - left subtree (*maybe empty*)
 - right subtree (*maybe empty*)

- Representation:
Binary Tree: Representation

Diagram of a binary tree with nodes A, B, C, D, E, and F, showing the left and right pointers.
ADTs Seen So Far

• Stack
 – Push
 – Pop

• Queue
 – Enqueue
 – Dequeue

• Priority Queue
 – Insert
 – DeleteMIN

Remember decreaseKey?
The Dictionary ADT

- **Data:**
 - a set of (key, value) pairs

- **Operations:**
 - Insert (key, value)
 - Find (key)
 - Remove (key)

- The Dictionary ADT is sometimes called the "Map ADT"
A Modest Few Uses

- Sets
- Dictionaries
- Networks : Router tables
- Operating systems : Page tables
- Compilers : Symbol tables

Probably the most widely used ADT!
Implementations

- Unsorted Linked-list: \(O(1) \) \(O(n) \) \(O(n) \)
- Unsorted array: \(O(1) \) \(O(n) \) \(O(n) \)
- Sorted array: \(O(n) \) \(O(n \log n) \) \(O(n) \)

moving nicely
Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children
 - result:
 - storage is small
 - operations are simple
 - average depth is small

- Order property
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
 - result: easy to find any given key

- What must I know about what I store?
Example and Counter-Example

BINARY SEARCH TREE

not binary

all children must obey order

NOT A BINARY SEARCH TREE
Find in BST, Recursive

Node Find(Object key, Node root) {
 if (root == NULL)
 return NULL;
 if (key < root.key)
 return Find(key,
 root.left);
 else if (key > root.key)
 return Find(key,
 root.right);
 else
 return root;
}
Find in BST, Iterative

Node Find(Object key, Node root) {
 while (root != NULL && root.key != key) {
 if (key < root.key) {
 root = root.left;
 } else {
 root = root.right;
 }
 }
 return root;
}

Runtime: Same as before O(n)
Insert in BST

Insert(13)
Insert(8)
Insert(31)

Find 13

Insertions happen only at the leaves – easy!

Runtime:
$O(n)$ worst case
BuildTree for BST

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST. **Runtime depends on the order!**
 - in given order
 - in reverse order
 - median first, then left median, right median, etc.
Bonus: FindMin/FindMax

- Find minimum

- Find maximum
Deletion in BST

Why might deletion be harder than insertion?

- Hard part: two children
- "left, then right"
Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max)
Non-lazy Deletion

• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.

• Three cases:
 – node has no children (leaf node)
 – node has one child
 – node has two children
Non-lazy Deletion – The Leaf Case

Delete(17)
Deletion – The One Child Case

Delete(15)
Delete(5)

What can we replace 5 with?
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:
- \textit{succ} from right subtree: \texttt{findMin(t.right)}
- \textit{pred} from left subtree: \texttt{findMax(t.left)}

Now delete the original node containing \textit{succ} or \textit{pred}
- Leaf or one child case – easy!
Finally...

10

7 replaces 5

7

2 9

20

30

Original node containing
7 gets deleted
Balanced BST

Observation
- BST: the shallower the better!
- For a BST with \(n \) nodes
 - Average height is \(O(\log n) \)
 - Worst case height is \(O(n) \)
- Simple cases such as insert(1, 2, 3, ..., \(n \)) lead to the worst case scenario

Solution: Require a **Balance Condition** that
1. ensures depth is \(O(\log n) \) — strong enough!
2. is easy to maintain — not too strong!
Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

2. Left and right subtrees of the root have equal *height*
Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

4. Left and right subtrees of every node have equal height
The AVL Balance Condition

Left and right subtrees of every node have equal heights differing by at most 1.

Define: $\text{balance}(x) = \text{height}(x.\text{left}) - \text{height}(x.\text{right})$

AVL property: $-1 \leq \text{balance}(x) \leq 1$, for every node x

- Ensures small depth
 - Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $O(2^h)$) nodes
- Easy to maintain
 - Using single and double rotations
The AVL Tree Data Structure

Structural properties
1. Binary tree property
2. Balance property: balance of every node is between -1 and 1

Result:
 Worst case depth is $O(\log n)$

Ordering property
 - Same as for BST
Proving Shallowness Bound

Let $S(h)$ be the min # of nodes in an AVL tree of height h

Claim: $S(h) = S(h-1) + S(h-2) + 1$

Solution of recurrence: $S(h) = O(2^h)$ (like Fibonacci numbers)

AVL tree of height $h=4$ with the min # of nodes
Testing the Balance Property

We need to be able to:
1.
2.
3.

NULLs have height -1