CSE 326 Data Structures

CSE 326 : Dave Bacon

Priority Queues : Floyd’s Algorithm, D heaps, Leftist heaps,...

Homework 2 due Friday
Binary Min Heaps (summary)

- **insert**: percolate up. $O(\log N)$ time.
- **deleteMin**: percolate down. $O(\log N)$ time.

\[d = \log_2 N \]
\[d = O(\log N) \]

\[S = 1 + 2 + \cdots + 2^d = 1 + 2(1 + 2 + \cdots + 2^d) - 2^{d+1} \]
\[S = 1 + 2S - 2^{d+1} \]
\[S = 2^{d+1} - 1 \]
Other Priority Queue Operations

- **decreaseKey**
 - given a pointer to an object in the queue, reduce its priority value

Solution: change priority and percolate up

- **increaseKey**
 - given a pointer to an object in the queue, increase its priority value

Why do we need a *pointer*? Why not simply data value?
Solution: change priority and percolate down

Hard to find
More Priority Queue Operations

- **Remove(objPtr)**
 - given a pointer to an object in the queue, remove it

 Solution: set priority to negative infinity, percolate up to root and deleteMin

Worst case Running time for all of these:
- **FindMax?**
- **ExpandHeap** – when heap fills, copy into new space.
 \[O(N) \]
More Priority Queue Operations

- buildHeap

 Naïve solution:

 \[S, 15, 25, 16, 39, N \]

 But in 1 by 1

Running time:

- insert: \(O(\log N) \)
- \(\rightarrow O(N \log N) \)

Can we do better?
BuildHeap: Floyd’s Method

Add elements arbitrarily to form a complete tree. Pretend it’s a heap and fix the heap-order property!

leaf leaves do not need to be start perc-down
Buildheap pseudocode

```java
private void buildHeap() {
    for (int i = currentSize/2; i > 0; i--)
        percolateDown(i);
}
```

runtime:

1st guess $O(N \log N)$??

$\Theta(\log N)$
BuildHeap: Floyd’s Method

12

5

3 10

4 8 1 7

6

2

9

4 8 10 7 11

3 1

6

9

1 2

4 8 10 7 11

2

1 5

3 6

9

1 2

4 8 10 7 11
Finally...

\[\sum_{i=0}^{n} \sum_{j=0}^{i} 2^{h-j} \]

\[\sum \]

sum of the heights of the nodes.

\[2^{h-1} - 2 - h \]

\[0 \]

vs

\[\frac{\text{size of tree}}{2^{(h-1)}} \]

\[\frac{CN1(cgA)}{2} \]

\[s = 2^h \cdot 0 + 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \cdots + 1 \cdot h \]

\[2s = 2^h \cdot 1 + 2^{h-1} \cdot 2 + 2^{h-2} \cdot 3 + \cdots + 2h \]

\[s = \frac{2^h + 2^{h-1} + 2^{h-2} + \cdots + 2 + 1 - h}{2^{h+1} - 1 - 1} \]

\[s = \frac{2^{h+1} - 2 - h}{2^h - 1} \]
Facts about Heaps

Observations:
• finding a child/parent index is a multiply/divide by two
• operations jump widely through the heap
• each percolate step looks at only two new nodes
• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!
• with huge data sets, disk accesses dominate
start at home
Find library
Take elevator
GOTO STACKS AND GET BOOKS
YOUR DESK
YOU
Cycles to access:
CPU 1
Cache (L1, L2) 1 2 3 4
Memory 200
Disk 10^6
A Solution: d-Heaps

- Each node has d children
- Still representable by array
- Good choices for d:
 - (choose a power of two for efficiency)
 - fit one set of children in a cache line
 - fit one set of children on a memory page/disk block

$log_d N$
Operations on d-Heap

- Insert: runtime $= \mathcal{O}(\log_d N)$
- deleteMin: runtime $= \mathcal{O}(d \log_d N)$

Does this help insert or deleteMin more?
One More Operation

- Merge two heaps. Ideas?

- How to merge Leftist Heaps → Friday
Leftist Heaps

Idea:
Focus all heap maintenance work in one small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right
Definition: Null Path Length

null path length (npl) of a node $x =$ the number of nodes between x and a null in its subtree

OR

$npl(x) =$ min distance to a descendant with 0 or 1 children

- $npl(\text{null}) = -1$
- $npl(\text{leaf}) = 0$
- $npl(\text{single-child node}) = 0$

Equivalent definitions:

1. $npl(x)$ is the height of largest complete subtree rooted at x
2. $npl(x) = 1 + \min \{npl(\text{left}(x)), npl(\text{right}(x))\}$
Leftist Heap Size

- A leftist tree with \(r \) nodes on the right path must have at least \(2^r - 1 \) nodes
- Induction
- \(r=1 \)

- Assume true for \(1, \ldots, r-1 \). Then leftist heap size \(r \):
Leftist Heap Properties

- **Heap-order property**
 - parent’s priority value is ≤ to childrens’ priority values
 - **result**: minimum element is at the root

- **Leftist property**
 - For every node x, \(npl(\text{left}(x)) \geq npl(\text{right}(x)) \)
 - **result**: tree is at least as “heavy” on the left as the right

Are leftist trees... complete? balanced?
Merge two leftist heaps (basic idea)

- Put the smaller root as the new root,
- Hang its left subtree on the left.
- Recursively merge its right subtree and the other tree.
Merging Two Leftist Heaps

- \(\text{merge}(T_1, T_2) \) returns one leftist heap containing all elements of the two (distinct) leftist heaps \(T_1 \) and \(T_2 \).
Leftist Merge Continued

If $npl(R') > npl(L_1)$

$R' = \text{Merge}(R_1, T_2)$

runtime:
Leftist Merge Example

(special case)
Sewing Up the Leftist Example

Done?
Finally…(Leftist)
Operations on **Leftist Heaps**

- **merge** with two trees of total size n: $O(\log n)$
- **insert** with heap size n: $O(\log n)$
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap

![Diagram showing merge operation]

- **deleteMin** with heap size n: $O(\log n)$
 - remove and return root
 - merge left and right subtrees

![Diagram showing deleteMin operation]
Random Definition: Amortized Time

am-or-tized time:

Running time limit resulting from “writing off” expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If \(M \) operations take total \(O(M \log N) \) time, amortized time per operation is \(O(\log N) \).

Difference from average time: