CSE 326 Data Structures

CSE 326 : Dave Bacon

Asymptotic Analysis
Logistics

• Project 1 – Reverse a sound file
 – Due Wed January 10, 2007 at electronically at midnight

• Homework 1 now online
 – Due Fri January 12, 2007 at beginning of lecture

• Reading (assume you finished Chapter 1)
 – Chapter 3 – (Project #1) Lists, Stacks, & Queues
 • Lists (pp. 57-81, heavy on Java, much of this should be review)
 • Stacks (pp. 82-83)
 • Applications of Stacks (pp. 83-91)
 • Queues (pp. 91-95)
 – Chapter 2 – (Topic for today, Monday) Algorithm Analysis (pp. 29-50)
Analysis of Algorithms

- Efficiency measure
 - How long the program takes
 (time complexity) ← our focus today
 - How much memory the program takes
 (memory complexity)

- Why analyze at all?
Asymptotic Analysis

• Running time as a function of the input size n
 – $T(n) = 4n + 5 + n^2$
 – $T(n) = \log_2 n + 5$
 – $T(n) = 2^n + 6n^6 - n$

• What happens as n grows?
Why Asymptotic Analysis?

- For small n most algorithms are fast
 - Time differences too small to notice
 - External things dominate (OS, disk I/O)

- n is often LARGE in practice
 - databases, internet, graphics, etc.

- Time differences really show up for large n
Example

\[
\begin{align*}
f(n) &= n^2 \\
g(n) &= 10n
\end{align*}
\]
Types of Asymptotic Analysis

• Worst case
 – Guarantee running time

• Average case
 – What do we mean by average?
 – Distribution over inputs?
Exercise

```
2 3 5 16 37 50 73 75 126

bool ArrayFind(int array[][], int n, int key){
    // Insert your algorithm here
}
```

What algorithm would you choose to implement this code snippet?
Analyzing Code

Basic Java operations Constant time
Consecutive statements Sum of times
Conditionals Larger branch plus test
Loops Sum of iterations
Function calls Cost of function body
Recursive functions Solve recurrence relation
3n+3 = \mathcal{O}(n)

Linear Search Analysis

```cpp
bool LinearArrayFind(int array[],
    int n,
    int key ) {
    for( int i = 0; i < n; i++ ) {
        if( array[i] == key )
            // Found it!
            return true;
    }
    return false;
}
```

Best Case:

4, 3

Worst Case:

4n, 3n+3
bool BinArrayFind(int array[], int low, int high, int key) {

 // The subarray is empty
 if(low > high) return false;

 // Search this subarray recursively
 int mid = (high + low) / 2;
 if(key == array[mid]) {
 return true;
 } else if(key < array[mid]) {
 return BinArrayFind(array, low, mid-1, key);
 }
 else {
 return BinArrayFind(array, mid+1, high, key);
 }

 4 + T(\(\frac{h}{2}\))

 \(4 \log_2 n + 5\)

 Best case: 4
 Worst case: \(\log_2 n + \frac{\pi}{2}\)
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?
 \[T(n) = 4 + T\left(\frac{n}{2}\right) \quad \text{with} \quad T(1) = 5 \]

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.
 \[T(n) = 4 + (4 + T\left(\frac{n}{4}\right)) \]

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.
 \[T(n) = 4K + T\left(\frac{n}{2^K}\right) \quad \text{where} \quad \frac{n}{2^K} = 1 \quad \text{and} \quad n = 2^K \]
 \[T(n) = 4 \log_2 n + S \quad K = \log_2 n \]
Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Worst Case</td>
<td>(3n+3)</td>
<td>(4\log_2 n + 8)</td>
</tr>
</tbody>
</table>

So... which algorithm is better? What tradeoffs can you make?
Fast Computer vs. Slow Computer
Fast Computer vs. Smart Programmer (round 1)

- Linear search on Pentium-IV
- Binary search on 486
Fast Computer vs. Smart Programmer (round 2)

- Linear search on Pentium-IV
- Binary search on 486
Asymptotic Analysis

• Asymptotic analysis looks at the order of the running time of the algorithm
 – A valuable tool when the input gets “large”
 – Ignores the effects of different machines or different implementations of the same algorithm

• Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 – Linear search is $T(n) = 3n + 2 \in O(n)$
 – Binary search is $T(n) = 4 \log_2 n + 4 \in O(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime
Order Notation: Intuition

\[f(n) = n^3 + 2n^2 \]
\[g(n) = 100n^2 + 1000 \]

Although not yet apparent, as \(n \) gets “sufficiently large”, \(f(n) \) will be “greater than or equal to” \(g(n) \).
Order Notation: Definition

\(O(f(n)) \) : a set or class of functions

\[g(n) \in O(f(n)) \quad \text{iff there exist constants } c \text{ and } n_0 \text{ such that:} \]

\[g(n) \leq c f(n) \quad \text{for all } n \geq n_0 \]

Example:

\[100n^2 + 1000 \leq 5 \left(n^3 + 2n^2 \right) \quad \text{for all } n \geq 19 \]

So \(g(n) \in O(f(n)) \)

Sometimes, you’ll see the notation \(g(n) = O(f(n)) \). This is equivalent to \(g(n) \in O(f(n)) \).

Remember: notation \(O(f(n)) = g(n) \) is meaningless!
Order Notation: Example

\[100n^2 + 1000 \leq 5(n^3 + 2n^2) \text{ for all } n \geq 19 \]

So \(f(n) \in O(g(n)) \)
Big-O: Common Names

O(1)
O(log₂ n)
O(n)
O(n log₂ n)
O(n²)
O(n³)
O(n^k) (k is a constant)
O(c^n) (c is a constant > 1)
Log?

$log_k n \in O(log_2 n)$?

$log_2 n^2 \in O(log_2 n)$?
The Limit Method

Is $f(n) \in O(g(n))$?
Style

O(6n^6 + 5 + n^{2.5})

O(2^n + 5n(n-1))
Pros and Cons of Asymptotic Analysis
Definition of Order Notation

- Upper bound: $T(n) = O(f(n))$ (Big-O)
 Exist constants c and n' such that
 $T(n) \leq c f(n)$ for all $n \geq n'$

- Lower bound: $T(n) = \Omega(g(n))$ (Omega)
 Exist constants c and n' such that
 $T(n) \geq c g(n)$ for all $n \geq n'$

- Tight bound: $T(n) = \Theta(f(n))$ (Theta)
 When both hold:
 $T(n) = O(f(n))$
 $T(n) = \Omega(f(n))$
ALGORITHM TH (n, A,B,C)
1. if $n \leq 0$ then return
2. TH (n-1, A,C,B)
3. A ==> B
4. TH (n-1, C,B,A)
end
Logistics

• Project 1 – Reverse a sound file
 – Due Wed January 10, 2007 at electronically at midnight

• Homework 1 now online
 – Due Fri January 12, 2007 at beginning of lecture

• Reading (assume you finished Chapter 1)
 – Chapter 3 – (Project #1) Lists, Stacks, & Queues
 • Lists (pp. 57-81, heavy on Java, much of this should be review)
 • Stacks (pp. 82-83)
 • Applications of Stacks (pp. 83-91)
 • Queues (pp. 91-95)
 – Chapter 2 – (Topic for today, Monday) Algorithm Analysis (pp. 29-50)
Office Hours

- Dave Bacon, Tu 4:00-5:00, CSE 460
- Ruth Anderson, M 3:30-4:30, CSE 360
- Ethan Phelps-Goodman, Th 10:30-11:30, CSE 218
- Jonah Cohen, W 1:30-2:30, TBA
- David Wu, W 4:00-5:00 (in lab CSE 002/003), Th 3:30-4:30 (in CSE 218)