CSE 326: Data Structures

Dave Bacon
Winter Quarter 2007
Lecture 1
Who?

Dave Bacon

- Research Assistant Professor in CSE

- Sorry, no relation to Kevin Bacon
CSE 326 Course Staff

Section A Instructor: Dave Bacon
Section B Instructor: Ruth Anderson

Teaching Assistants:
• Ethan Phelps-Goodman (Section A)
• Jonah Cohen (Section B)
• David Wu (all over the place)
Sections for Lecture A

- AA, Th 9:30-10:20 am MGH 251
- AB, Th 12:30-1:20 pm MEB 246
- There WILL be section this week!
Today’s Outline

- Introductions
- Administrative Info
- What is this course about?
- Review: Queues and stacks
Course Information

- **Instructor:** Dave Bacon, CSE 460
dabacon@cs.washington.edu
- **Text:** *Data Structures & Algorithm Analysis in Java*, (Mark Allen Weiss), 2nd Edition, 2007
- **Course Web page:**
 http://www.cs.washington.edu/326
- **Mailing List for course announcements:**
 - cse326-announce@cs.washington.edu
 - Subscribe *yourself* using web interface, see course web page
Course Mechanics

- Written Homeworks (7 total)
 - Due at the **start** of class on due date (Fridays)
 - No late homeworks accepted
 - Lowest homework grade dropped
- Programming Projects (3 total)
 - In Java
 - Turned in electronically (Wed eve) and on paper
 - Once per quarter: use your “late day” for extra 24 hours – **Must email TA**
- Work in teams only on explicit team projects
 - Appropriate *discussions* encouraged – see website
Course Mechanics(2)

- Approximate Grading
 - 25% - Written Homework Assignments
 - 25% - Programming Projects
 - 20% - Midterm Exam (in class)
 - 25% - Final Exam (common – different time than listed in UW exam schedule, more coming on this)
 - 5% - Best of the four items above.
Office Hours

- Dave Bacon, Tu 4:00-5:00, CSE 460
- Ruth Anderson, M 3:30-4:30, CSE 360
- Ethan Phelps-Goodman, Th 10:30-11:30, CSE 218
- Jonah Cohen, W 1:30-2:30, TBA
- David Wu, W 4:00-5:00 (in lab CSE 002/003), Th 3:30-4:30 (in CSE 218)
Homework for Today!!

1) Sign up for mailing list (immediately)
2) Project #1: (read before section tomorrow)
3) Preliminary Survey: fill out by evening of Friday January 5th (link from webpage)
4) Information Sheet: bring to lecture on Friday January 5th
5) Reading in Weiss (see next slide)
Reading

- Reading in *Data Structures and Algorithm Analysis in Java, 2nd Ed., 2007* by Weiss

- For this week (on handout)
 - Chapter 1 – (review) Mathematics and Java (pp. 1-25)
 - Chapter 3 – (Project #1) Lists, Stacks, & Queues
 - Lists (pp. 57-81, heavy on Java, much of this should be review)
 - Stacks (pp. 82-83)
 - Applications of Stacks (pp. 83-91, sections on “Postfix Expressions” and “Infix to Postfix Conversion” can be skipped, but read “Method Calls”)
 - Queues (pp. 91-95)
 - Chapter 2 – (Topic for Friday) Algorithm Analysis (pp. 29-50)
Bring to Class on Friday:

- Name: Dave Bacon
- Email address: dabacon@cs
- Year: 00 CS
- Major: Physics & Literature
- Hometown: Yreka, CA
- Interesting Fact or what I did over winter break: Planned wedding

1/3/07
Today’s Outline

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks
Class Overview

Introduction to many of the basic data structures used in computer software
 › Be exposed to a variety of data structures
 › Know when to use them
 › Practice mathematical techniques for analyzing the algorithms that use them
 › Practice implementing and using them by writing programs

Goal:
 be able to make good design choices as a developer, project manager, or system customer
Goals

Get a job at Google?

- Interview question: Design and describe a system/application that will most efficiently produce a report of the top 1 million Google search requests. These are the particulars.

* You are given 12 servers to work with. They are all dual-processor machines with 4Gb of RAM, 4x400GB hard drives and networked together. (Basically, nothing more than high-end PC's)

* The log data has already been cleaned for you. It consists of 100 Billion log lines, broken down into 12 320 GB files of 40-byte search terms per line.
Goals

Master of the programming universe?

- “I will, in fact, claim that the difference between a bad programmer and a good one is whether he considers his code or his data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships.”

- Linus Torvalds, 2006
Data Structures

“Clever” ways to organize information in order to enable efficient computation

› What do we mean by clever?
› What do we mean by efficient?
Data Structures?

Array -> List <->
binary Tree
Stack
Hash Table
Queue

Binary Search Tree
Picking the best Data Structure for the job

- The data structure you pick needs to support the operations you need.
- Ideally it supports the operations you will use most often in an efficient manner.
- Examples of operations:
 - List ADT with operations insert and delete.
 - Stack ADT with operations push and pop.
Terminology

- Abstract Data Type (ADT)
 - Mathematical description of an object with set of operations on the object. Useful building block.
- Algorithm
 - A high level, language independent, description of a step-by-step process
- Data structure
 - A specific family of algorithms for implementing an abstract data type.
- Implementation of data structure
 - A specific implementation in a specific language
Terminology examples

- A stack is an *abstract data type* supporting *push*, *pop* and *isEmpty* operations.
- A stack *data structure* could use an array, a linked list, or anything that can hold data.
- One stack *implementation* is found in `java.util.Stack`.
Concepts vs. Mechanisms

- **Abstract**
- **Pseudocode**
- **Algorithm**
 - A sequence of high-level, language independent operations, which may act upon an abstracted view of data.
- **Abstract Data Type (ADT)**
 - A mathematical description of an object and the set of operations on the object.

- **Concrete**
- **Specific programming language**
- **Program**
 - A sequence of operations in a specific programming language, which may act upon real data in the form of numbers, images, sound, etc.

- **Data structure**
 - A specific way in which a program’s data is represented, which reflects the programmer’s design choices/goals.
Why So Many Data Structures?

Ideal data structure:
“fast”, “elegant”, memory efficient

Generates tensions:
› time vs. space
› performance vs. elegance
› generality vs. simplicity
› one operation’s performance vs. another’s

The study of data structures is the study of tradeoffs. That’s why we have so many of them!
Today’s Outline

- Introductions
- Administrative Info
- What is this course about?
- Review: Queues and stacks
Priority

First Example: FIFO Queue ADT

- Queue operations
 - create
 - destroy
 - enqueue
 - dequeue
 - is_empty

FIFO: First in, first out

G enqueue → F E D C B dequeue → A

mg(0G) → TC, DB
enq(TC)
Circular Array Queue Data Structure

enqueue (Object x) {
 Q[back] = x;
 back = (back + 1) % size
}

decqueue () {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

How test for empty list?
How to find K-th element in the queue?
What is complexity of these operations?
Limitations of this structure?
void enqueue(Object x) {
 if (is_empty())
 front = back = new Node(x)
 else
 back->next = new Node(x)
 back = back->next
}

bool is_empty() {
 return front == null
}

Object dequeue() {
 assert(!is_empty)
 return_data = front->data
 temp = front
 front = front->next
 delete temp
 return return_data
}
Circular Array vs. Linked List

- Space: array (fixed size) vs. LL (variable size)
- Allocation time: array vs. LL
Second Example: Stack ADT

- Stack operations
 - create
 - destroy
 - push
 - pop
 - top
 - is_empty

LIFO (Last In, First Out)
Stacks in Practice

- Function call stack
- Removing recursion
- Balancing symbols (parentheses)
- Evaluating Reverse Polish Notation
Homework for Today!!

1) Sign up for mailing list (immediately)
2) Project #1: (read before section tomorrow)
3) Preliminary Survey: fill out by evening of Friday January 5th
4) Information Sheet: bring to lecture on Friday January 5th
5) Reading in Weiss (see next slide)