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CSE 326 Data Structures
Midterm Review

Hal Perkins
Spring 2007

Dates

• Midterm Friday!
• Project 2 due next Wednesday
• Homework 4 

– Hmmmm…..
– We ought to talk about this….

Logistics

• Closed Notes
• Closed Book
• Open Mind
• You may bring a calculator, though don’t 

even think about loading it with notes or 
programs.  And you probably won’t find it 
of much use anyway.

Material Covered

• Everything we’ve talked/read in class up to 
AVL trees
– And for AVL trees, up to inserting and 

rotations, but not implementations in Java
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Material Not Covered

• We won’t make you write syntactically 
correct Java code (pseudocode okay)

• We won’t make you do a super hard proof
• We won’t test you on the details of 

generics, interfaces, etc. in Java
– But you should know the basic ideas since we 

spent a lecture on them and had to deal with 
them in project 2A

Order Notation: Definition
O( f(n) ) :  a set or class of functions

g(n) ∈ O( f(n) ) iff there exist consts c and n0
such that: 

g(n) ≤ c f(n) for all n ≥ n0

Example:  g(n) =1000n vs. f(n) = n2

Is g(n) ∈ O( f(n) ) ?
Pick: n0 = 1000, c = 1

Back to our two functions f and g from before

g(n)

c f(n)

n0

n

1000n ≤ 1 * n2

for all n ≥ 1000

So g(n) ∈ O( f(n) )

Log?
logkn ∈ O(log2 n)?

log2n2 ∈ O(log2 n)? 

logkn=log2n/log2k

log2n2=2log2n

Definition of Order Notation
• Upper bound: T(n)  = O(f(n)) Big-O

Exist constants c and n’ such that 
T(n) ≤ c f(n) for all n ≥ n’

• Lower bound: T(n)  = Ω(g(n)) Omega
Exist constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’
• Tight bound: T(n)  = θ(f(n)) Theta

When both hold:
T(n)  =  O(f(n))
T(n)  =  Ω(f(n))
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Priority Queue ADT
• Checkout line at the supermarket ???
• Printer queues ???
• operations: insert, deleteMin

insert deleteMin

6   2
15  23

12   18
45   3    7

Implementations of Priority Queue ADT

Sorted list (Array)

Unsorted list (Linked-List)

Binary Search Tree (BST)

Sorted list (Linked-List)

Unsorted list (Array)

deleteMininsert
O(1)/O(N)worst-array full, 
should say WHY, might
reject on full instead.

O(1) O(N) – to find value

O(N) – to find value

O(log N) to find loc w. 
Bin search, but O(N)
to move vals

O(1) to find val, but 
O(N) to move vals, (or 
O(1) if in reverse order)

O(1)
O(N) to find loc, O(1) 
to do the insert

O(N) O(N)

Binary Heap O(log N)
close to O(1)
1.67 levels on average

O(log N)
Plus –
good 
memory 
usage

Binary Heap

Tree Review

A

E

B

D F

C

G

IH

LJ MK N

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(C):

A

DEFJ..NI

Its parent or parent’s ancestor

Its child or child’s descendent

Itself plus all descendents

Tree T

Heap Structure Property
• A binary heap is a complete binary tree.
Complete binary tree – binary tree that is 

completely filled, with the possible exception 
of the bottom level, which is filled left to right.

Examples:
Since they have 
this regular
structure property, 
we can take 
advantage of that 
to store them in a 
compact manner.
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Heap Order Property
Heap order property: For every non-root 

node X, the value in the parent of X is 
less than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap This is a PARTIAL order (diff than BST)

For each node, its value is less than all of its 
descendants (no distinction between left and right)

This is the order for a MIN heap – could do the 
same for a max heap.

Representing Complete 
Binary Trees in an Array

GED
CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

131211109876543210
LKJIHGFEDCBA

implicit (array) implementation:

2 * i

(2 * i)+1
└ i / 2┘

Heap Operations
• findMin:
• insert(val): percolate up.
• deleteMin: percolate down.

996040

8020

10

50 700

85

65

Is the tree unique?  
Swap 85 and 99.
Swap 700 and 85?

How?
Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

Now insert 90. 
(no swaps, even 
though 99 is 
larger!)

Now insert 7.

Optimization, 
bubble up an 
empty space 
to reduce # of 
swaps
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DeleteMin: percolate down

996040

1520

10

50 700

85

65

996040

6520

15

50 700

85

Max # of 
exchanges? = 
O(log N), 

There is a good 
chance goes to 
bottom (started at 
bottom) vs. insert

- Could also use 
the percolate 
empty bubble 
down

BuildHeap: Floyd’s Method
5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12
Red nodes need to 
percolate down

0     1      2      3 10    11   12

4

9654

23

1

8 1012

7

11

A Solution: d-Heaps
• Each node has d children
• Still representible by array
• Good choices for d:

– (choose a power of two 
for efficiency)

– fit one set of children in 
a cache line

– fit one set of children on 
a memory page/disk 
block

3 7 2 8 5 12 1110 6 9112

How does height 
compare to bin 
heap? (less)

Operations on d-Heap

• Insert       :    runtime =

• deleteMin:   runtime = 

Does this help insert or deleteMin more?

depth of tree
decreases,
O(logd n) worst

percolateDown
requires comparison
to find min,
O(d logd n), worst/ave
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null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
npl(x) = min distance to a descendant with 0 or 1 children 

Definition: Null Path Length

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child node) = 0

000

0?1

??

?

Equivalent definitions:

1. npl(x) is the height of largest
complete subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0

1

0

2

1

Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority 
values

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))
– result: tree is at least as “heavy” on the left as 

the rightAre leftist trees…
complete? 
balanced?

No, 
no

Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap 

containing all elements of the two 
(distinct) leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

done? Leftist property?
npl(left(x)) ≥ npl(right(x))

Leftist Merge Continued

a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

If npl(R’) > npl(L1)

runtime: O(log n)

Swap L and R if needed

Work at each step = call to merge, swap (constant) 
traverse the right path of both trees = length is at most log N 
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Leftist Merge Example

1210

5

87

3

14

1

0 0

1

0 0

0

merge

7

3

14

?

0

0

1210

5

8

1

0 0

0

merge

10

5
?

0 merge

12

8

0

0

8

12

0

0

(special case)

Sewing Up the Leftist Example

8

12

0

0

10

5
?

0

7

3

14

?

0

0

8

12

0

0

10

5
1

0

7

3

14

?

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0

Done?

We forgot to swap L-R at places!

Finally…(Leftist) 

8

12

0

0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

Skew Heaps
Problems with leftist heaps

– extra storage for npl
– extra complexity/logic to maintain and check npl
– right side is “often” heavy and requires a switch

Solution: skew heaps
– “blindly” adjusting version of leftist heaps
– merge always switches children when fixing right 

path
– amortized time for: merge, insert, deleteMin = O(log

n)
– however, worst case time for all three = O(n)

- Simple to implement, 
- no npl stuff
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Merging Two Skew Heaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Only one step per iteration, with children always switched

Yet Another Data Structure:
Binomial Queues

• Structural property
– Forest of binomial trees with at most

one tree of any height

• Order property
– Each binomial tree has the heap-order 

property

What’s a forest?

What’s a binomial tree?

The Binomial Tree, Bh
• Bh has height h and exactly 2h nodes
• Bh is formed by making Bh-1 a child of another 

Bh-1

• Root has exactly h children
• Number of nodes at depth d is binomial coeff. 

– Hence the name; we will not use this last 
property 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
d
h

B0 B1 B2 B3

Binomial Queue with n
elements

Binomial Q with n elements has a unique structural 
representation in terms of binomial trees!

Write n in binary:    n = 1101 (base 2) = 13 (base 10)

1 B3 1 B2 No B1 1 B0
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Merging Two Binomial 
Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight {

a. m ← total number of  Bk’s in the two BQs
b. if m=0:   continue;
c. if m=1:   continue;
d. if m=2:   combine the two Bk’s to form a Bk+1
e. if m=3:   retain one Bk and combine the 

other two to form a Bk+1
}

Claim: When this process ends, the forest
has at most one tree of any height

# of 1’s
0+0 = 0
1+0 = 1
1+1 = 0+c
1+1+c = 1+c

Example: Binomial Queue 
Merge

31

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

Example: Binomial Queue 
Merge

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

721

H1: H2:

Example: Binomial Queue 
Merge

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:
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Example: Binomial Queue 
Merge

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

Example: Binomial Queue 
Merge

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

More Recursive Tree 
Calculations:

Tree Traversals
A traversal is an order for 

visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right 

subtree

• In-order: Left subtree, root, right 
subtree

• Post-order: Left subtree, right subtree, 
root

+

*

2 4

5

(an expression tree)

The Dictionary ADT

• Data:
– a set of

(key, value) 
pairs

• Operations:
– Insert (key, 

value)
– Find (key)
– Remove (key) The Dictionary ADT is sometimes 

called the “Map ADT”

• gerbil
small rodent

• Rat
larger rodent

• mouse
annoying rodent

insert(mouse, ….)

find(rat)
• rat

larger rodent, …
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Binary Search Tree Data 
Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I 
store?

Comparison, equality testing

Find in BST, Recursive
Node Find(Object key,

Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root.key)
return Find(key,

root.right);
else
return root;

}

2092

155

10

307 17

Runtime:

Θ(depth) = Θ(n) worst, Θ(log n) avg

Insert in BST

2092

155

10

307 17

Runtime:

O(depth) = O(n) worst, O(log n) avg

Insert(13)
Insert(8)
Insert(31)

Insertions happen only 
at the leaves – easy!

Deletion in BST

2092

155

10

307 17

Why might deletion be harder than insertion?

May be in middle, instead of at leaf
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Non-lazy Deletion – The Leaf 
Case

2092

155

10

307 17

Delete(17)

Easy – prune

Deletion – The One Child Case

2092

155

10

307

Delete(15)

Pull up child – will this always work?

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?

A value guaranteed to be
between the two subtrees!
- succ from right subtree
- pred from left subtree

How long do these operations take? (find, insert, delete)

Lazy Deletion
Instead of physically deleting 
nodes, just mark them as deleted

+ simpler
+ physical deletions done in 

batches
+ some adds just flip deleted 

flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to 

be modified (e.g., min and 
max)

2092

155

10

307 17
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Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(log n)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n)        – strong enough!
2. is easy to maintain                  – not too strong!

The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property:  –1  ≤ balance(x) ≤ 1,   for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes
• Easy to maintain

– Using single and double rotations

Adelson-Velskii and Landis

The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties
1. Binary tree property
2. Balance property:

balance of every node is
between -1 and 1

Result:
Worst case depth is

O(log n)

Ordering property
– Same as for BST 15

3

1171

84

6

3

1171

84

6

2

AVL tree

not an AVL tree

5

5
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AVL tree insert
Let x be the node where an imbalance occurs.

Four cases to consider.  The insertion is in the
1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.
Cases 2 & 3 are solved by a double rotation.

Draw 1-4 pic

Fix: Apply Single Rotation

3

1 6
00

1
6

3

1 0

1

2

Single Rotation:   
1. Rotate between x and child

AVL Property violated at this node (x)

Single rotation in general
a

Z
Y

b

Xh
h

h

h ≥ -1

a

ZY

b

Xh+1 h h

X < b < Y < a < Z

- Before red 
dot, X = h, 
- Q:height
of tree is? 
h+2, 
-After red 
dot, X = h+1

Height of tree before?   Height of tree after?  Effect on Ancestors?
h+ 2 h+ 2 none

Case 1, 
same for 
case 4

Single rotation example

21103

205

15

1

2 4

17

21

10

3 20

5

15

1

2

4

17
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Fix: Apply Double Rotation

3

1 6
00

1

3

6

1

0

1

2

6

3

1

0

1

2

Balanced?

Intuition: 3 must become root

AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

Double rotation in general
a

Z

b

W

c

X Yh-1

h

h h -1

a

Z

b

W

c

X Yh-1 hh h

h ≥ 0

W < b <X < c < Y < a < Z

-Before red 
dot, X = h-1, 
- Q:height of 
tree is? h+2, 
-After red 
dot, X = h 
CROSSOUT
-1

-Actually red 
dot could be 
at X or Y

Height of tree before?   Height of tree after?  Effect on Ancestors?
h+ 2 h+ 2 none

Case 2, 
same for 
case 3

Double rotation, step 1

104

178

15

3 6

16

5

106

178

15

4

3

16

5

Double rotation, step 2

106

178

15

4

3

16

5

10

6 17

8

15

4

3

16

5
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Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:

case #1: Perform single rotation and exit

case #2: Perform double rotation and exit

Both rotations keep the subtree height unchanged.
Hence only one (sinlge or double) rotation is sufficient!

Zig-zig

Zig-zag


