CSE 326: Data Structures
Graphs — Topological Sort

Hal Perkins
Spring 2007
Lectures 22-23

Agenda

* Basic graph terminology
» Graph representations
 Topological sort

» Reference: Weiss, Ch. 9

Graph... ADT?

» Not quite an ADT...
operations not clear

Han%jmke
relationships between objects Leia

A formalism for representing
Graph G = (V,E)

— Set of vertices:

V=4V, Vo, Vid

— Set of edges:
E = {e.&,..&}
where each e; connects two
vertices (V;1,Vi2)

\
E

=A
=A

Han, Leia, Luke}
(Luke, Leia),
(Han, Leia),
(Leia, Han)}

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?
Edge labels:

4

Some Applications:
Moving Around Washington

§ Bettingham
\ llfr
——— lll'||
‘—\ | / II Sesnls _,‘\.\\-n.n\h\-u Spokane
\ I :JI _— ;."' S — _';"II
l o ATscomn Preblia N —— //
\J/ \ \ 3 /.)\\\l\-“-n..u' -
| _ Olympia f—— o ;. -
=) | Enumeclaw N S ——
4 | !' Yakimu Richland Pulln
|
| o

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

Some Applications:
Reliability of Communication

{ Bellingham

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

Some Applications:
Bus Routes in Downtown Seattle

4th Q
3rd
2nd
1st ¢ @) @) @] O
o U [[[
E = 3 El e
[0 Ll e} < o
=1 [0 a
n 4]
s
<

If we’re at 3@ and Pine, how can we get to
1stand University using Metro?

Graph Definitions

In directed graphs, edges have a specific direction:

Han j Luke
b Leia

In undirected graphs, they don’t (edges are two-way):

Hanoﬁ Luke
Leia

visadjacenttou if (u,v) e E

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can
be the last):
p = {Seattle, Salt Lake City, San Francisco, Dallas}
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices except
that the first vertex is also the last (in undirected
graphs, no edge can be repeated)

Trees as Graphs

» Every tree is a graph! (&)
* Not all graphs are trees!
grap (B) ©

A graph is a tree if ©® & ¢
— There are no cycles
(directed or undirected) ©) (H)

— There is a path from the
root to every node

10

Directed Acyclic Graphs (DAGS)

DAGs are directed
graphs with no
(directed) cycles.

main()

multQ

. dd
Aside: If program call- 2ddo

graph is a DAG, then all

procedure calls can be in-

lined access() readQ

11

Graph Representations

Han jLuke
0. List of vertices + list of edges % i
1. 2-D matrix of vertices (marking edges in the cells)
“adjacency matrix”
2. List of vertices each with a list of adjacent vertices
“adjacency list”

Vertices and edges

Things we might want to do: may be labeled

* iterate over vertices

* iterate over edges

* iterate over vertices adj. to a vertex
 check whether an edge exists

12

Representation 1: Adjacency Matrix

A JV] x V]| array in which an element
(u,Vv) istrue if and only if there is an edge
fromutov

Han
Han Luke
Luke

Leia

Han Luke Leia

Leia

space requirements: runtime: 13

Weighted Edges

* adjacency matrix:

ALV _ {weight Lif (u,

0 it (u,

1 2 3 4

v) € E
v) ¢ E

14

Representation 2: Adjacency List

A |V]-ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Han
Han j) Luke
m Luke

Leia

Leia

space requirements: runtime: 15

Representation
* adjacency list:

2 [{3

[4

pt

B W N R

R)

P

16

Application: Topological Sort

Given a directed graph, G = (V,E), output all the
vertices in V such that no vertex is output before
any other vertex with an edge to it.

Is the output unique? .

Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

18

void Graph::topsort(){
Vertex v, w;

labelEachVertexWithltsln-degree();

for (int counter=0; counter < NUM_VERTICES;
counter++){

v = FindNewVertexOfDegreeZero();
v.topologicalNum = counter;

for each w adjacent to v
w. indegree--;

19

Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero
vertices
3. While Q not empty
a. v=Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Note: could use a stack, list, set,

) box, ... instead of a queue
Runtime:

20

void Graph::topsort(){
Queue q(NUM_VERTICES); 1int counter = 0; Vertex v, w;
labelEachVertexWithltsIn-degree();

q-makeEmpty () ; intialize the
for each vertex v queue
if (v.indegree == 0)
g-enqueue(Vv);

while (!q.isEmpty()){ |geta vertex with
v = q.dequeue(); indegree 0
v.topologicalNum = ++counter;
for each w adjacent to v

if (--w.indegree == 0) insert new
g-enqueue(w); eligible
} vertices

}

Runtime: ”

Output:

22

