CSE 326: Data Structures
Splay Trees

Hal Perkins
Spring 2007
Lecture 13

AVL Trees Revisited

- Balance condition:
 - For every node x, $-1 \leq \text{balance}(x) \leq 1$
 - Strong enough: Worst case depth is $O(\log n)$
 - Easy to maintain: one single or double rotation

- Guaranteed $O(\log n)$ running time for
 - Find?
 - Insert?
 - Delete?
 - buildTree?

AVL Trees Revisited

- What extra info did we maintain in each node?
- Where were rotations performed?
- How did we locate this node?

Other Possibilities?

- Could use different balance conditions, different ways to maintain balance, different guarantees on running time, …
- Why aren’t AVL trees perfect?
- Many other balanced BST data structures
 - Red-Black trees
 - AA trees
 - Splay Trees
 - 2-3 Trees
 - B-Trees
 - …
Splay Trees

- Blind adjusting version of AVL trees
 - Why worry about balances? Just rotate anyway!
- **Amortized** time per operations is $O(\log n)$
- Worst case time per operation is $O(n)$
 - But guaranteed to happen rarely

Insert/Find always rotate node to the root!

SAT/GRE Analogy question:
AVL is to Splay trees as __________ is to __________

Recall: Amortized Complexity

If a sequence of M operations takes $O(M f(n))$ time, we say the amortized runtime is $O(f(n))$.

- Worst case time *per operation* can still be large, say $O(n)$
- Worst case time for any sequence of M operations is $O(M f(n))$

Average time *per operation* for any sequence is $O(f(n))$

Amortized complexity is **worst-case** guarantee over *sequences* of operations.

Recall: Amortized Complexity

- Is amortized guarantee any weaker than worst-case?
- Is amortized guarantee any stronger than average-case?
- Is average case guarantee good enough in practice?
- Is amortized guarantee good enough in practice?

The Splay Tree Idea

If you’re forced to make a really deep access:
 - Since you’re down there anyway, fix up a lot of deep nodes!
Find/Insert in Splay Trees

1. Find or insert a node k
2. Splay k to the root using:
 - zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, k
 - Great if k is accessed again
2. And helps many others!
 - Great if many others on the path are accessed

Splaying node k to the root: Need to be careful!

One option (that we won’t use) is to repeatedly use AVL single rotation until k becomes the root: (see Section 4.5.1 for details)

Splaying node k to the root:

Need to be careful!

What’s bad about this process?

Splay: Zig-Zag*

*Just like an… Which nodes improve depth?
Splay: Zig-Zig*

*Is this just two AVL single rotations in a row?

Special Case for Root: Zig

Relative depth of ρ, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

Splaying Example: Find(6)

Still Splaying 6
Finally…

Another Splay: Find(4)

Example Splayed Out

But Wait…

What happened here?

Didn’t two find operations take linear time instead of logarithmic?

What about the amortized $O(\log n)$ guarantee?
Why Splaying Helps

• If a node n on the access path is at depth d before the splay, it’s at about depth $d/2$ after the splay

• Overall, nodes which are low on the access path tend to move closer to the root

• Splaying gets amortized $O(\log n)$ performance. (Maybe not now, but soon, and for the rest of the operations.)

Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
 – Less storage per node, easier to code

• Often data that is accessed once, is soon accessed again!
 – Splaying does implicit \textit{caching} by bringing it to the root

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root
 – if node \textbf{not} found, splay what would have been its parent

What if we didn’t splay?

Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

What if we didn’t splay?
Splay Operations: Remove

Now what?

Join

Join(L, R):
given two trees such that (stuff in L) < (stuff in R), merge them:

Splay on the maximum element in L, then attach R

Does this work to join any two trees?

Delete Example

Splay Tree Summary

• All operations are in amortized $O(\log n)$ time
• Splaying can be done top-down; this may be better because:
 – only one pass
 – no recursion or parent pointers necessary
 – we didn’t cover top-down in class
• Splay trees are very effective search trees
 – Relatively simple
 – No extra fields required
 – Excellent locality properties: frequently accessed keys are cheap to find