Yet Another Data Structure: Binomial Queues

- Structural property
 - Forest of binomial trees with at most one tree of any height

- Order property
 - Each binomial tree has the heap-order property

The Binomial Tree, B_h
- B_h has height h and exactly 2^h nodes
- B_h is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children
- Number of nodes at depth d is binomial coeff. $\binom{h}{d}$
 - Hence the name; we will not use this last property

Binomial Queue with n elements
Binomial Q with n elements has a unique structural representation in terms of binomial trees!
Write n in binary: $n = 1101_{(base\ 2)} = 13_{(base\ 10)}$
Properties of Binomial Queue

- At most one binomial tree of any height

- \(n \) nodes \(\Rightarrow \) binary representation is of size ?
 \(\Rightarrow \) deepest tree has height ?
 \(\Rightarrow \) number of trees is ?

Define: \(\text{height(forest } F) = \max_{\text{tree } T \in F} \{ \text{height}(T) \} \)

*Binomial Q with \(n \) nodes has height \(\Theta(\log n) \)

Operations on Binomial Queue

- Will again define *merge* as the base operation
 - insert, deleteMin, buildBinomialQ will use merge

- Can we do increaseKey efficiently?
 decreaseKey?

- What about findMin?

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For \(k \) from 0 to max height {
 a. \(m \leftarrow \) total number of \(B_k \)'s in the two BQs
 b. if \(m=0 \): continue;
 c. if \(m=1 \): continue;
 d. if \(m=2 \): combine the two \(B_k \)'s to form a \(B_{k+1} \)
 e. if \(m=3 \): retain one \(B_k \) and combine the other two to form a \(B_{k+1} \)
}

Claim: When this process ends, the forest has at most one tree of any height

Example: Binomial Queue Merge

- H1:
- H2:
Example: Binomial Queue Merge

H1:
H2:

```
1
/|
2 1 3
/ \|
5 1 5 7 3
/ \  /\  \
6 4 2 4 6 7
```

Complexity of Merge

Constant time for each height
Max height is: \(\log n \)

\[\Rightarrow \text{worst case running time} = \Theta(\quad) \]

Insert in a Binomial Queue

Insert\((x)\): Similar to leftist or skew heap

- **runtime**
 Worst case complexity: same as merge
 \(O(\quad) \)

- Average case complexity: \(O(1) \)

Why??
Hint: Think of adding 1 to 1101

deleteMin in Binomial Queue

Similar to leftist and skew heaps....
deleteMin: Example

find and delete smallest root

merge BQ (without the shaded part) and BQ'

Result:

runtime: