CSE 326: Data Structures
Final Exam Review

James Fogarty
Autumn 2007
Lecture $n - 1$
Announcements

• Exam Wednesday 2:30pm, 2 hours, here in ARC 160
 – Logistics: same as midterm (closed book)

• Comprehensive
 – Everything up to, but not including, Data Compression
 – Also not anything about A*
 – So look over the midterm review again, in addition to this
k-d Tree Construction (18)
Quad Trees

• Space Partitioning
Hash Tables

- Constant time accesses!
- A **hash table** is an array of some fixed size, usually a prime number.
- General idea:

 ![Diagram of hash table and hash function](image)

 - Key space (e.g., integers, strings)
 - Hash function: \(h(K) \)
 - Table size \(\text{TableSize} - 1 \)
Separate Chaining

- Separate chaining:
 All keys that map to the same hash value are kept in a list (or “bucket”).

Insert:
- 10
- 22
- 107
- 12
- 42
Open Addressing

Insert:
38
19
8
109
10

• **Linear Probing**: after checking spot $h(k)$, try spot $h(k)+1$, if that is full, try $h(k)+2$, then $h(k)+3$, etc.
Linear Probing

\[f(i) = i \]

- Probe sequence:
 \[0^{th} \text{ probe} = h(k) \mod \text{TableSize} \]
 \[1^{th} \text{ probe} = (h(k) + 1) \mod \text{TableSize} \]
 \[2^{th} \text{ probe} = (h(k) + 2) \mod \text{TableSize} \]
 \[\ldots \]
 \[i^{th} \text{ probe} = (h(k) + i) \mod \text{TableSize} \]
Quadratic Probing

\[f(i) = i^2 \]

- Probe sequence:
 - 0th probe = \(h(k) \mod \text{TableSize} \)
 - 1st probe = \((h(k) + 1) \mod \text{TableSize} \)
 - 2nd probe = \((h(k) + 4) \mod \text{TableSize} \)
 - 3rd probe = \((h(k) + 9) \mod \text{TableSize} \)
 - \(\ldots \)
 - \(i^{th} \) probe = \((h(k) + i^2) \mod \text{TableSize} \)

Less likely to encounter Primary Clustering
Double Hashing

\[f(i) = i \times g(k) \]

where \(g \) is a second hash function

• Probe sequence:

 0\(^\text{th}\) probe = \(h(k) \mod \text{TableSize} \)

 1\(^\text{st}\) probe = \((h(k) + g(k)) \mod \text{TableSize} \)

 2\(^\text{nd}\) probe = \((h(k) + 2g(k)) \mod \text{TableSize} \)

 3\(^\text{rd}\) probe = \((h(k) + 3g(k)) \mod \text{TableSize} \)

 \ldots

 \(i\(^\text{th}\) \) probe = \((h(k) + i\times g(k)) \mod \text{TableSize} \)
Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- **When to rehash?**
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold

- **Cost of rehashing?**
Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
 – \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}

• Each set has a unique name, one of its members
 – \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}

• Union(x,y) – take the union of two sets named x and y

• Find(x) – return the name of the set containing x.
Up-Tree for DU/F

Initial state

Intermediate state

Roots are the names of each set.
Find Operation

- Find(x) follow x to the root and return the root

Find(6) = 7
Union Operation

- Union(i,j) - assuming i and j roots, point i to j.
Weighted Union

- Weighted Union
 - Always point the smaller tree to the root of the larger tree
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Sorting: *The Big Picture*

Given *n comparable* elements in an array, sort them in an increasing order.

Simple algorithms: \(O(n^2)\)
- Insertion sort
- Selection sort
- Bubble sort
- Shell sort
- ...

Fancier algorithms: \(O(n \log n)\)
- Heap sort
- Merge sort
- Quick sort
- ...

Comparison lower bound: \(\Omega(n \log n)\)

Specialized algorithms: \(O(n)\)
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
Insertion Sort: Idea

- At the k^{th} step, put the k^{th} input element in the correct place among the first k elements.
- Result: After the k^{th} step, the first k elements are sorted.

Runtime:
- worst case:
- best case:
- average case:
Selection Sort: idea

- Find the smallest element, put it 1st
- Find the next smallest element, put it 2nd
- Find the next smallest, put it 3rd
- And so on …
HeapSort: Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:
“Divide and Conquer”

• Very important strategy in computer science:
 – Divide problem into smaller parts
 – Independently solve the parts
 – Combine these solutions to get overall solution

• Idea 1: Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves → known as Mergesort

• Idea 2: Partition array into small items and large items, then recursively sort the two sets → known as Quicksort
Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together
Mergesort Example

Mergesort is a sorting algorithm that works by dividing the input into smaller sublists, sorting those sublists individually, and then merging those sublists back together. The process is repeated recursively until the entire list is sorted.

The example shown here illustrates the steps of Mergesort on a list of numbers: 8 2 9 4 5 3 1 6.

1. **Divide**: The list is divided into two halves: 8 2 9 4 and 5 3 1 6.
2. **Divide**: Each half is further divided into two halves: 8 2 and 9 4 for the first half, and 5 3 and 1 6 for the second half.
3. **Divide**: Each of these halves is divided into single elements: 8, 2, 9, 4, 5, 3, 1, 6.
4. **Merge**: The single elements are merged in sorted order: 1 2 3 4 5 6 8 9.
5. **Merge**: The two halves are merged back together, resulting in the final sorted list: 1 2 3 4 5 6 8 9.
Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in O(1) time
Quicksort Example
Decision Tree Example

possible orders

a < b < c, b < c < a, c < a < b, a < c < b, b < a < c, c < b < a

a < c < b

b < c < a

b < a < c

b > c

a > b

b < c < a

b < a < c

c < b < a

actual order

a < b < c

a < c < b

b < c

b > c

a < b < c

a < c < b

b < c

b > c

a < b < c

a < c < b

b < c

b > c

a < b < c

a < c < b

b < c

b > c

a < b < c

a < c < b

b < c

b > c
BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K, create an array count of size K, increment counts while traversing the input, and finally output the result.

Example $K=5$. Input = (5,1,3,4,3,2,1,1,5,4,5)

<table>
<thead>
<tr>
<th>count</th>
<th>array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Running time to sort n items?
Fixing impracticality: RadixSort

• Radix = “The base of a number system”
 – We’ll use 10 for convenience, but could be anything

• Idea: BucketSort on each digit, least significant to most significant (lsd to msd)
Radix Sort Example (1st pass)

Bucket sort by 1’s digit

Input data

<table>
<thead>
<tr>
<th>Input data</th>
<th>After 1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>721</td>
</tr>
<tr>
<td>537</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>123</td>
</tr>
<tr>
<td>721</td>
<td>537</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>38</td>
<td>478</td>
</tr>
<tr>
<td>123</td>
<td>38</td>
</tr>
<tr>
<td>67</td>
<td>9</td>
</tr>
</tbody>
</table>

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.
Radix Sort Example (2nd pass)

After 1st pass

<table>
<thead>
<tr>
<th>After 1st pass</th>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>123</td>
<td>721</td>
</tr>
<tr>
<td>537</td>
<td>123</td>
</tr>
<tr>
<td>67</td>
<td>537</td>
</tr>
<tr>
<td>478</td>
<td>38</td>
</tr>
<tr>
<td>38</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>478</td>
</tr>
</tbody>
</table>

Bucket sort by 10’s digit

<table>
<thead>
<tr>
<th>Bucket sort by 10’s digit</th>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>721</td>
</tr>
<tr>
<td>2</td>
<td>123</td>
</tr>
<tr>
<td>3</td>
<td>537</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>478</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Radix Sort Example (3rd pass)

After 2nd pass
3
9
721
123
537
38
67
478

Bucket sort by 100’s digit

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>478</td>
<td>537</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>721</td>
</tr>
<tr>
<td>0</td>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After 3rd pass
3
9
38
67
123
478
537
721

Invariant: after k passes the low order k digits are sorted.
Graph… ADT?

• Not quite an ADT…
operations not clear

• A formalism for representing relationships between objects

 Graph $G = (V,E)$

 - Set of vertices:
 $V = \{v_1, v_2, \ldots, v_n\}$

 - Set of edges:
 $E = \{e_1, e_2, \ldots, e_m\}$
 where each e_i connects two vertices (v_{i1}, v_{i2})

 $V = \{\text{Han}, \text{Leia}, \text{Luke}\}$
 $E = \{(\text{Luke}, \text{Leia}),$
 $(\text{Han}, \text{Leia}),$
 $(\text{Leia}, \text{Han})\}$
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be inlined

\{\text{Tree}\} \subset \{\text{DAG}\} \subset \{\text{Graph}\}
Rep 1: Adjacency Matrix

A $|V| \times |V|$ array in which an element (u, v) is true if and only if there is an edge from u to v.

\[
\begin{array}{ccc}
\text{Han} & \text{Luke} & \text{Leia} \\
\hline
\text{Han} & & \\
\text{Luke} & & \\
\text{Leia} & & \\
\end{array}
\]

Runtimes:
- Iterate over vertices?
- Iterate over edges?
- Iterate edges adj. to vertex?
- Existence of edge?

Space requirements?
Rep 2: Adjacency List

A $|V|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices.

Runtimes:
- Iterate over vertices?
- Iterate over edges?
- Iterate edges adj. to vertex?
- Existence of edge?

Space requirements?
Application: Topological Sort

Given a directed graph, \(G = (V, E) \), output all the vertices in \(V \) such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Minimize and DO a topo sort
Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
 a. \(v = Q\text{.dequeue} \); output \(v \)
 b. Reduce the in-degree of all vertices adjacent to \(v \)
 c. If new in-degree of any such vertex \(u \) is zero
 \(Q\text{.enqueue}(u) \)

Note: could use a stack, list, set, box, … instead of a queue

Runtime:
Comparison: DFS versus BFS

• Depth-first search
 – Does not always find shortest paths
 – Must be careful to mark visited vertices, or you could go into an infinite loop if there is a cycle

• Breadth-first search
 – Always finds shortest paths – optimal solutions
 – Marking visited nodes can improve efficiency, but even without doing so search is guaranteed to terminate

 – Is BFS always preferable?
Iterative-Deepening DFS (II)

- IDFS_Search(Start, Goal_test)
 - i := 1;
 - repeat
 - answer := Bounded_DFS(Start, Goal_test, i);
 - if (answer != fail) then return answer;
 - i := i+1;
 - end
Saving the Path

• Our pseudocode returns the goal node found, but not the path to it

• How can we remember the path?
 – Add a field to each node, that points to the previous node along the path
 – Follow pointers from goal back to start to recover path
Example (Unweighted Graph)
Dijkstra’s Algorithm for Single Source Shortest Path

• Similar to breadth-first search, but uses a **heap** instead of a queue:
 - Always select (expand) the vertex that has a lowest-cost path to the start vertex

• Correctly handles the case where the lowest-cost (shortest) path to a vertex is **not** the one with fewest edges
Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
- Finished or known vertices
 - Shortest distance has been computed
- Unknown vertices
 - Have tentative distance
Dijkstra’s Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 |
B | Y | 2 | A
C | Y | 1 | A
D | Y | 4 | A
E | Y | 11 | G
F | Y | 4 | B
G | Y | 8 | H
H | Y | 7 | F

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to V is shortest, path to W must be \textit{at least as long}
 \textit{(or else we would have picked W as the next vertex)}
• So the path through W to V cannot be any shorter!
The Trouble with Negative Weight Cycles

What’s the shortest path from A to E?

Problem?
Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.

\[\text{Fib}(N) = \text{Fib}(N-1) + \text{Fib}(N-2) \]
Floyd-Warshall

for (int k = 1; k <= V; k++)
 for (int i = 1; i <= V; i++)
 for (int j = 1; j <= V; j++)
 if ((M[i][k] + M[k][j]) < M[i][j])
 M[i][j] = M[i][k] + M[k][j]

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices
Floyd-Warshall - for All-pairs shortest path

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Network Flows

- Given a weighted, directed graph \(G = (V, E) \)
- Treat the edge weights as capacities
- How much can we flow through the graph?
How do we know there’s still room?

• Construct a residual graph:
 – Same vertices
 – Edge weights are the “leftover” capacity on the edges
 – Add extra edges for backwards-capacity too!

 – If there is a path $s \rightarrow t$ at all, then there is still room
Example (5)

Add the backwards edges, to show we can “undo” some flow
Example (7)

Final, maximum flow

Flow / Capacity
Residual Capacity
Backwards flow
Network Flows

• Create a single source, with infinite capacity edges connected to sources
• Same idea for multiple sinks
Minimum cuts

• If we cut G into (S, T), where S contains the source s and T contains the sink t,

• Of all the cuts (S, T) we could find, what is the smallest (max) flow $f(S, T)$ we will find?
Min Cut - Example (8)

Capacity of cut = 5
Spanning Tree in a Graph

- Vertex = router
- Edge = link between routers

- Spanning tree
 - Connects all the vertices
 - No cycles
Spanning Tree Algorithm

ST(i: vertex)
mark i;
for each j adjacent to i do
 if j is unmarked then
 Add {i,j} to T;
 ST(j);
 end {ST}
end {Main}

Main
T := empty set;
ST(1);
end {Main}
Example Step 16

ST(1)

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}
Minimum Spanning Trees

Given an undirected graph $G = (V, E)$, find a graph $G' = (V, E')$ such that:

- E' is a subset of E
- $|E'| = |V| - 1$
- G' is connected
- is minimal

$$\sum_{(u,v) \in E'} c_{uv}$$

Applications: wiring a house, power grids, Internet connections
Find the MST
Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’s Algorithm
Completely different!
Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. Pick the edge with the smallest weight.
Find MST using Prim's

Your Turn

Start with V_1

<table>
<thead>
<tr>
<th>V</th>
<th>Kwn</th>
<th>Distance</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order Declared Known:

V_1
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

$G=(V,E)$
Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
2. While there are still unmarked edges
 a. Pick the lowest cost edge \((u, v)\) and mark it
 b. If \(u\) and \(v\) are not already connected, add \((u, v)\) to the MST and mark \(u\) and \(v\) as connected to each other

Doesn’t it sound familiar?
Example of Kruskal 8,9

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}

0 1 1 2 2 3 3 3 3 4