CSE 326: Data Structures

Graph Algorithms
Graph Search

Lecture 23

James Fogarty
Autumn 2007
Problem: Large Graphs

- It is expensive to find optimal paths in large graphs, using BFS or Dijkstra’s algorithm (for weighted graphs)

- How can we search large graphs efficiently by using “commonsense” about which direction looks most promising?
Plan a route from 9th & 50th to 3rd & 51st
Example

Plan a route from 9th & 50th to 3rd & 51st
Best-First Search

The *Manhattan distance* \((\Delta x + \Delta y)\) is an estimate of the distance to the goal

- It is a *search heuristic*

- **Best-First Search**
 - Order nodes in priority to *minimize estimated distance to the goal*

- **Compare: BFS / Dijkstra**
 - Order nodes in priority to minimize distance from the start
Best-First Search

Open – Heap (priority queue)
Criteria – Smallest key (highest priority)
h(n) – heuristic estimate of distance from n to closest goal

Best_first_search(Start, Goal_test)
 insert(Start, h(Start), heap);
 repeat
 if (empty(heap)) then return fail;
 Node := deleteMin(heap);
 if (Goal_test(Node)) then return Node;
 for each Child of node do
 if (Child not already visited) then
 insert(Child, h(Child), heap);
 end
 Mark Node as visited;
 end
Obstacles

Best-FS eventually will expand vertex to get back on the right track
Non-Optimality of Best-First

Path found by Best-first

Shortest Path
Improving Best-First

- Best-first is often tremendously faster than BFS/Dijkstra, but might stop with a non-optimal solution.
- How can it be modified to be (almost) as fast, but guaranteed to find optimal solutions?
 - One of the first significant algorithms developed in AI
 - Widely used in many applications
Exactly like Best-first search, but using a different criteria for the priority queue:

\[
\text{minimize } (\text{distance from start}) + (\text{estimated distance to goal})
\]

priority \(f(n) = g(n) + h(n) \)

- \(f(n) = \) priority of a node
- \(g(n) = \) true distance from start
- \(h(n) = \) heuristic distance to goal
Optimality of A*

Suppose the estimated distance is *always* less than or equal to the true distance to the goal

- heuristic is a lower bound

Then: when the goal is removed from the priority queue, we are **guaranteed** to have found a shortest path!
A* in Action

h = 6 + 2
h = 7 + 3

H = 1 + 7
Application of A*: Speech Recognition

(Simplified) Problem:

• System hears a sequence of 3 words
• It is unsure about what it heard
 – For each word, it has a set of possible “guesses”
 – E.g.: Word 1 is one of { “hi”, “high”, “I” }
• What is the most likely sentence it heard?
Speech Recognition as Shortest Path

Convert to a shortest-path problem:

- Utterance is a “layered” DAG
- Begins with a special dummy “start” node
- Next: A layer of nodes for each word position, one node for each word choice
- Edges between every node in layer i to every node in layer i+1
 - Cost of an edge is smaller if the pair of words frequently occur together in real speech
 + Technically: - log probability of co-occurrence
- Finally: a dummy “end” node
- Find shortest path from start to end node
Summary: Graph Search

Depth First
- Little memory required
- Might find non-optimal path

Breadth First
- Much memory required
- Always finds optimal path

Iterative Depth-First Search
- Repeated depth-first searches, little memory required

Dijskstra’s Short Path Algorithm
- Like BFS for weighted graphs

Best First
- Can visit fewer nodes
- Might find non-optimal path

A*
- Can visit fewer nodes than BFS or Dijkstra
- Optimal if heuristic estimate is a lower-bound
Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.

\[\text{Fib}(N) = \text{Fib}(N-1) + \text{Fib}(N-2) \]
Floyd-Warshall

for (int k = 1; k <= V; k++)
 for (int i = 1; i <= V; i++)
 for (int j = 1; j <= V; j++)
 if ((M[i][k] + M[k][j]) < M[i][j])
 M[i][j] = M[i][k] + M[k][j]

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices
Initial state of the matrix:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-4</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

\[M[i][j] = \min(M[i][j], M[i][k] + M[k][j]) \]
Floyd-Warshall - for All-pairs shortest path

\[
\begin{array}{cccccc}
 & a & b & c & d & e \\
 a & 0 & 2 & 0 & -4 & 0 \\
b & - & 0 & -2 & 1 & -1 \\
c & - & - & 0 & -1 & 1 \\
d & - & - & - & 0 & 4 \\
e & - & - & - & - & 0 \\
\end{array}
\]

Final Matrix Contents