CSE 326: Data Structures

Graph Algorithms
Graph Search

Lecture 23

James Fogarty
Autumn 2007

Problem: Large Graphs

It is expensive to find optimal paths
In large graphs, using BFS or
Dijkstra’s algorithm (for weighted
graphs)

d How can we search large graphs
efficiently by using “commonsense”
about which direction looks most
promising?

Example

53nd St

52nd St

51st St G

50t St S

AV 0T
AN 16
ANY ;18
AN o/
ANY 19
ANY G
ANY 7
AN piE

Plan a route from 9t & 50t to 3'd & 51t

AV pud

Example

53nd St

52nd St

51St St — > > > > — G

50t St

AV 0T
AN 16
ANY ;18
AN o/
ANY 19
ANY G
ANY 7
AN piE

Plan a route from 9t & 50t to 3'd & 51t

AV pud

Best-First Search

he Manhattan distance (A x+ Ay) Is an
estimate of the distance to the goal

e [t IS a search heuristic

] Best-First Search

e Order nodes in priority to minimize
estimated distance to the goal

d Compare: BFS / Dijkstra

e Order nodes in priority to minimize distance
from the start

Best-First Search

Open — Heap (priority queue)
Criteria — Smallest key (highest priority)
h(n) — heuristic estimate of distance from n to closest goal

Best First_Search(Start, Goal_test)

Insert(Start, h(Start), heap);

repeat
If (empty(heap)) then return fail;
Node = deleteMin(heap);
If (Goal test(Node)) then return Node;
for each Child of node do

If (Child not already visited) then
iInsert(Child, h(Child),heap);

end
Mark Node as visited,;

end

Obstacles

Best-FS eventually will expand vertex
to get back on the right track

52nd St

51st St

50t St

—
—
v
—
v
—
—

oAV ;10T
OAY 6
CT\v4 ll18

INY yl

INY 419
INY 4G
INY y¥
OAY i€
OAY pul

53nd St

52nd St

51st St

Path found by
Best-first

Non-Optimality of Best-First

N\

N\
1

50t St

—»CD<—<—

oAV ;10T

:

AV 16 l
ANV ;8
Y yl

A\VATI

Shortest
Path

|

INY y¥

Y pi&

OAY pul

Improving Best-First

dBest-first is often tremendously faster
than BFS/Dijkstra, but might stop with a
non-optimal solution

JHow can it be modified to be (almost)
as fast, but guaranteed to find optimal
solutions?

JA* - Hart, Nilsson, Raphael 1968

* One of the first significant algorithms
developed in Al

* Widely used in many applications

A*

Exactly like Best-first search, but using a different
criteria for the priority queue:

minimize (distance from start) +
(estimated distance to goal)

priority f(n) = g(n) + h(n)
f(n) = priority of a node
g(n) = true distance from start
h(n) = heuristic distance to goal

10

Optimality of A*

Suppose the estimated distance Is always
less than or equal to the true distance to
the goal

e heuristic Is a lower bound

Then: when the goal is removed from the
oriority queue, we are guaranteed to
nave found a shortest path!

11

53nd St

A* in Action

h=6+2
N

O

52nd St

51st St

50t St

IAY 16 l

Y ;8
AV il
AV 419

INY S

|

IAY y¥

OAY piE

OAY pul

Application of A*. Speech
Recognition

(Simplified) Problem:
e System hears a sequence of 3 words

e [t IS unsure about what it heard

— For each word, it has a set of possible
‘guesses”

—E.g.: Word 1 is one of { “hi”, “high”, “I” }
 What is the most likely sentence it heard?

13

Speech Recognition as Shortest
Path

Convert to a shortest-path problem:
o Utterance is a “layered” DAG
Begins with a special dummy “start” node

Next: A layer of nodes for each word position, one
node for each word choice

Edges between every node in layer i to every node
In layer i+1

— Cost of an edge is smaller if the pair of words frequently
occur together in real speech

+ Technically: - log probability of co-occurrence
Finally: a dummy “end” node
Find shortest path from start to end node

14

Code C, Code C, Code C,

[Wi) [w2 | W
P(W,/#))
A P(WHW) W,3
P(W,/#)
W 2
P(W,/#) 2
Wt W3
P(W,/#)
[W, W3

15

Summary: Graph Search

Depth First
 Little memory required
» Might find non-optimal path
Breadth First
e Much memory required
» Always finds optimal path
Iterative Depth-First Search
» Repeated depth-first searches, little memory required
Dijskstra’s Short Path Algorithm
» Like BFS for weighted graphs
Best First
« Can visit fewer nodes
» Might find non-optimal path
A*
« Can visit fewer nodes than BFS or Dijkstra

« Optimal if heuristic estimate is a lower-bound
16

Dynamic Programming

Algorithmic technique that
systematically records the answers to
sub-problems in a table and re-uses
those recorded results (rather than
re-computing them).

Simple Example: Calculating the Nth
Fibonacci number.
Fib(N) = Fib(N-1) + Fib(N-2)

17

Floyd-Warshall

for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)

if ((MLiTLKI+ MIKILT) < MLAILET)
MEITLET = MCiTLKI+ MEKICE]

Invariant: After the kth iteration, the matrix includes the shortest paths for all
pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices

18

Initial state of the

matrix:
b |[c |d |e
a |0 |2 |- |4 |-
b 0 (-2 |1 |3
C - |0 |- |1
d - (- |0 |4
e - |- |- |0

MD]DT = min(MO]0], MO][K]+ MIK]D])

19

Floyd-Warshall -
for All-pairs
shortest path

o
OIN|IT
I{DO
~| A
IIAO

Final Matrix
Contents

olalo|oc|w
D
D
O
ol
o|lh|F

20

