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Problem: Large GraphsProblem: Large Graphs

It is expensive to find optimal paths 
in large graphs, using BFS or 
Dijkstra’s algorithm (for weighted 
graphs)

How can we search large graphs 
efficiently by using “commonsense”
about which direction looks most 
promising?
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Best-First SearchBest-First Search

The Manhattan distance (Δ x+ Δ y) is an 
estimate of the distance to the goal

• It is a search heuristic
Best-First Search

• Order nodes in priority to minimize 
estimated distance to the goal

Compare: BFS / Dijkstra
• Order nodes in priority to minimize distance 

from the start



6

Best-First SearchBest-First Search

Best_First_Search( Start, Goal_test)
insert(Start, h(Start), heap);
repeat

if (empty(heap)) then return fail;
Node := deleteMin(heap);
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then
insert(Child, h(Child),heap);

end
Mark Node as visited;

end

Open – Heap (priority queue)
Criteria – Smallest key (highest priority)
h(n) – heuristic estimate of distance from n to closest goal
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ObstaclesObstacles

Best-FS eventually will expand vertex 
to get back on the right track
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Non-Optimality of Best-FirstNon-Optimality of Best-First

52nd St

51st St

50th St

10
thA

ve

9
thA

ve

8
thA

ve

7
thA

ve

6
thA

ve

5
thA

ve

4
thA

ve

3
rdA

ve

2
ndA

ve

S G

53nd St

Path found by 
Best-first

Shortest 
Path



9

Improving Best-FirstImproving Best-First

Best-first is often tremendously faster 
than BFS/Dijkstra, but might stop with a 
non-optimal solution
How can it be modified to be (almost) 

as fast, but guaranteed to find optimal 
solutions?
A* - Hart, Nilsson, Raphael 1968

• One of the first significant algorithms 
developed in AI

• Widely used in many applications
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A*A*

Exactly like Best-first search, but using a different 
criteria for the priority queue:

minimize  (distance from start) +
(estimated distance to goal)

priority f(n) = g(n) + h(n)
f(n) = priority of a node
g(n) = true distance from start
h(n) = heuristic distance to goal
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Optimality of A*Optimality of A*

Suppose the estimated distance is always
less than or equal to the true distance to 
the goal

• heuristic is a lower bound

Then:  when the goal is removed from the 
priority queue, we are guaranteed to 
have found a shortest path!
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A* in ActionA* in Action
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Application of A*: Speech 
Recognition

Application of A*: Speech 
Recognition

(Simplified) Problem:
• System hears a sequence of 3 words
• It is unsure about what it heard 

– For each word, it has a set of possible 
“guesses”

– E.g.: Word 1 is one of { “hi”, “high”, “I” }
• What is the most likely sentence it heard?
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Speech Recognition as Shortest 
Path

Speech Recognition as Shortest 
Path

Convert to a shortest-path problem:
• Utterance is a “layered” DAG
• Begins with a special dummy “start” node
• Next: A layer of nodes for each word position, one 

node for each word choice
• Edges between every node in layer i to every node 

in layer i+1
– Cost of an edge is smaller if the pair of words frequently 

occur together in real speech
+ Technically: - log probability of co-occurrence

• Finally: a dummy “end” node
• Find shortest path from start to end node
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Summary: Graph SearchSummary: Graph Search

Depth First
• Little memory required
• Might find non-optimal path

Breadth First
• Much memory required
• Always finds optimal path

Iterative Depth-First Search
• Repeated depth-first searches, little memory required

Dijskstra’s Short Path Algorithm
• Like BFS for weighted graphs

Best First
• Can visit fewer nodes
• Might find non-optimal path

A*
• Can visit fewer nodes than BFS or Dijkstra
• Optimal if heuristic estimate is a lower-bound
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Dynamic ProgrammingDynamic Programming

Algorithmic technique that 
systematically records the answers to 
sub-problems in a table and re-uses
those recorded results (rather than 
re-computing them).

Simple Example: Calculating the Nth 
Fibonacci number.

Fib(N) = Fib(N-1) + Fib(N-2)
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Floyd-WarshallFloyd-Warshall

for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
if ( ( M[i][k]+ M[k][j] ) < M[i][j] )

M[i][j] = M[i][k]+ M[k][j] 

Invariant: After the kth iteration, the matrix includes the shortest paths for all 
pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices
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