CSE 326: Data Structures
Dijkstra’s Algorithm

James Fogarty
Autumn 2007
Dijkstra, Edsger Wybe

Legendary figure in computer science; was a professor at University of Texas.

Supported teaching introductory computer courses without computers (pencil and paper programming)

Supposedly wouldn’t (until very late in life) read his e-mail; so, his staff had to print out messages and put them in his box.

E.W. Dijkstra (1930-2002)

1972 Turning Award Winner, Programming Languages, semaphores, and …
Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
- Finished or known vertices
 - Shortest distance has been computed
- Unknown vertices
 - Have tentative distance
Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest *unknown* vertex
2) Add it to *known* vertices
3) Update distances
Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph

Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

- a’s cost = $\min(a$’s old cost, b’s cost + cost of $(b, a))$
- a’s prev path node = b
Important Features

• Once a vertex is made *known*, the cost of the shortest path to that node is known

• While a vertex is still not *known*, another shorter path to it might still be found

• The shortest path itself can be found by following the backward pointers stored in `node.path`
Dijkstra’s Algorithm in action

Vertex	Visited?	Cost	Found by
A | | 0 |
B | ?? |
C | ?? |
D | ?? |
E | ?? |
F | ?? |
G | ?? |
H | ?? |
Dijkstra’s’s Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | A
B | <=2 | A
C | <=1 | A
D | <=4 | A
E | ?? |
F | ?? |
G | ?? |
H | ?? |
Dijkstra’s Algorithm in action

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Visited?</th>
<th>Cost</th>
<th>Found by</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td><=2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td><=4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td><=12</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | |
B | Y | 2 | A |
C | Y | 1 | A |
D | <=4 | | A |
E | <=12 | | C |
F | <=4 | | B |
G | ?? | | |
H | ?? | | |
Dijkstra’s Algorithm in action

Vertex Visited? Cost Found by
A Y 0 A
B Y 2 A
C Y 1 A
D Y 4 A
E <=12 C
F <=4 B
G ??
H ??
Dijkstra’s Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 |
B | Y | 2 | A
C | Y | 1 | A
D | Y | 4 | A
E | <=12 | C |
F | Y | 4 | B
G | ?? | |
H | <=7 | F |
Dijkstra’s Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | A |
B | Y | 2 | A |
C | Y | 1 | A |
D | Y | 4 | A |
E | <=12 | C |
F | Y | 4 | B |
G | <=8 | H |
H | Y | 7 | F |
Dijkstra’s Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | |
B | Y | 2 | A |
C | Y | 1 | A |
D | Y | 4 | A |
E | <=11 | G | |
F | Y | 4 | B |
G | Y | 8 | H |
H | Y | 7 | F |
Dijkstra’s Algorithm in action

Vertex	Visited?	Cost	Found by
 A | Y | 0 |
 B | Y | 2 | A
 C | Y | 1 | A
 D | Y | 4 | A
 E | Y | 11 | G
 F | Y | 4 | B
 G | Y | 8 | H
 H | Y | 7 | F

Your turn

<table>
<thead>
<tr>
<th>V</th>
<th>Visited?</th>
<th>Cost</th>
<th>Found by</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s Alg: Implementation

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
 Select the unknown node b with the lowest cost
 Mark b as known
 For each node a adjacent to b
 a’s cost = min(a’s old cost, b’s cost + cost of (b, a))
 a’s prev path node = b (if we updated a’s cost)

What data structures should we use?

Running time?
void Graph::dijkstra(Vertex s) {
 Vertex v, w;

 Initialize s.dist = 0 and set dist of all other vertices to infinity

 while (there exist unknown vertices, find the one b with the smallest distance)
 b.known = true;

 for each a adjacent to b
 if (!a.known)
 if (b.dist + weight(b, a) < a.dist) {
 a.dist = (b.dist + weight(b, a));
 a.path = b;
 }

 }

Running time: $O(|E| \log |V|)$ – there are $|E|$ edges to examine, and each one causes a heap operation of time $O(\log |V|)$
Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs without negative weights

• A greedy algorithm (irrevocably makes decisions without considering future consequences)

• Intuition for correctness:
 – shortest path from source vertex to itself is 0
 – cost of going to adjacent nodes is at most edge weights
 – cheapest of these must be shortest path to that node
 – update paths for new node and continue picking cheapest path
Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to \(V \) is shortest, path to \(W \) must be \textit{at least as long}
 \(\textit{(or else we would have picked} \ W \textit{as the next vertex)} \)
• So the path through \(W \) to \(V \) cannot be any shorter!
Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:

Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the correct shortest path

Inductive step: Only when we prove the shortest path to some node v (which is not in the cloud) is correct, we add it to the cloud

When does Dijkstra’s algorithm not work?
The Trouble with Negative Weight Cycles

What’s the shortest path from A to E?

Problem?
Dijkstra’s vs BFS

At each step:
1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

Dijkstra’s Algorithm

At each step:
1) Pick vertex from queue
2) Add it to visited vertices
3) Update queue with neighbors

Breadth-first Search

Some Similarities:
Single-Source Shortest Path

• Given a graph $G = (V, E)$ and a single distinguished vertex s, find the shortest weighted path from s to every other vertex in G.

All-Pairs Shortest Path:

• Find the shortest paths between all pairs of vertices in the graph.
• How?
Analysis

• Total running time for Dijkstra’s:
 \[O(|V| \log |V| + |E| \log |V|) \] (heaps)

What if we want to find the shortest path from each point to ALL other points?
Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.
 Fib(N) = Fib(N-1) + Fib(N-2)
Floyd-Warshall

for (int k = 1; k <= V; k++)
 for (int i = 1; i <= V; i++)
 for (int j = 1; j <= V; j++)
 if ((M[i][k] + M[k][j]) < M[i][j])
 M[i][j] = M[i][k] + M[k][j]

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices
Initial state of the matrix:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-4</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

\[M[i][j] = \min(M[i][j], M[i][k] + M[k][j]) \]
Floyd-Warshall - for All-pairs shortest path

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Final Matrix Contents