CSE 326: Data Structures
Graphs

James Fogarty
Autumn 2007
Graph... ADT?

• Not quite an ADT... operations not clear

• A formalism for representing relationships between objects

 Graph $G = (V, E)$
 – Set of vertices:
 $V = \{v_1, v_2, \ldots, v_n\}$
 – Set of edges:
 $E = \{e_1, e_2, \ldots, e_m\}$
 where each e_i connects two vertices (v_{i1}, v_{i2})

V = \{Han, Leia, Luke\}
E = \{(Luke, Leia),
 (Han, Leia),
 (Leia, Han)\}
Examples of Graphs

- **The web**
 - Vertices are webpages
 - Each edge is a link from one page to another

- **Call graph of a program**
 - Vertices are subroutines
 - Edges are calls and returns

- **Social networks**
 - Vertices are people
 - Edges connect friends
Graph Definitions

In *directed* graphs, edges have a direction:

In *undirected* graphs, they don’t (are two-way):

\(v \) is *adjacent* to \(u \) if \((u, v) \in E \)
Weighted Graphs

Each edge has an associated weight or cost.

- Clinton to Mukilteo: 20
- Kingston to Edmonds: 30
- Bainbridge to Seattle: 35
- Bremerton to Seattle: 60
Paths and Cycles

• A *path* is a list of vertices $\{v_1, v_2, \ldots, v_n\}$ such that $(v_i, v_{i+1}) \in E$ for all $0 \leq i < n$.

• A *cycle* is a path that begins and ends at the same node.

$p = \{Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle\}$
Path Length and Cost

- **Path length**: the number of edges in the path
- **Path cost**: the sum of the costs of each edge

length(p) = 5
cost(p) = 11.5
More Definitions: Simple Paths and Cycles

A \textit{simple path} repeats no vertices (except that the first can also be the last):
\begin{itemize}
 \item p = \{Seattle, Salt Lake City, San Francisco, Dallas\}
 \item p = \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle\}
\end{itemize}

A \textit{cycle} is a path that starts and ends at the same node:
\begin{itemize}
 \item p = \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle\}
 \item p = \{Seattle, Salt Lake City, Seattle, San Francisco, Seattle\}
\end{itemize}

A \textit{simple cycle} is a cycle that is also a simple path (in undirected graphs, no edge can be repeated)
Trees as Graphs

• Every tree is a graph with some restrictions:
 – the tree is *directed*
 – there are *no cycles* (directed or undirected)
 – there is a *directed path from the root to every node*
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be inlined

\{Tree\} \subset \{DAG\} \subset \{Graph\}
Rep 1: Adjacency Matrix

A $|V| \times |V|$ array in which an element (u,v) is true if and only if there is an edge from u to v.

<table>
<thead>
<tr>
<th></th>
<th>Han</th>
<th>Luke</th>
<th>Leia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Runtimes:
- Iterate over vertices?
- Iterate over edges?
- Iterate edges adj. to vertex?
- Existence of edge?

Space requirements?
Rep 2: Adjacency List

A $|V|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices.

Runtimes:
- Iterate over vertices?
- Iterate over edges?
- Iterate edges adj. to vertex?
- Existence of edge?

Space requirements?
Some Applications: Moving Around Washington

What’s the *shortest way* to get from Seattle to Pullman?

Edge labels:

Distance
Some Applications: Moving Around Washington

What’s the *fastest way* to get from Seattle to Pullman?

Edge labels:

Distance, speed limit
Some Applications: Reliability of Communication

If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?
Some Applications: Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to 1st and University using Metro? How about 4th and Seneca?
Application: Topological Sort

Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Minimize and DO a topo sort
Topological Sort: Take One

1. Label each vertex with its \textit{in-degree} (# of inbound edges)

2. \textbf{While} there are vertices remaining:
 a. Choose a vertex v of \textit{in-degree zero}; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. Remove v from the list of vertices

\textit{Runtime:}
```cpp
void Graph::topsort(){
    Vertex v, w;

    labelEachVertexWithItsIn-degree();

    for (int counter=0; counter < NUM_VERTICES; counter++){
        v = findNewVertexOfDegreeZero();

        v.topologicalNum = counter;
        for each w adjacent to v
            w.indegree--;  
    }
}

O(depends)
```

What's the bottleneck?
Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
 a. $v = Q\text{.dequeue}$; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. If new in-degree of any such vertex u is zero
 $Q\text{.enqueue}(u)$

Note: could use a stack, list, set, box, … instead of a queue

Runtime:
void Graph::topsort(){
 Queue q(NUM_VERTICES); int counter = 0; Vertex v, w;
 labelEachVertexWithItsIn-degree();

 q.makeEmpty();
 for each vertex v
 if (v.indegree == 0)
 q.enqueue(v);

 while (!q.isEmpty()){
 v = q.dequeue();
 v.topologicalNum = ++counter;
 for each w adjacent to v
 if (--w.indegree == 0)
 q.enqueue(w);
 }
}

_Runtime: \(O(|V| + |E|) \)
Graph Connectivity

Undirected graphs are *connected* if there is a path between any two vertices

Directed graphs are *strongly connected* if there is a path from any one vertex to any other

Directed graphs are *weakly connected* if there is a path between any two vertices, *ignoring direction*

A *complete* graph has an edge between every pair of vertices
Graph Traversals

• Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 – Must mark visited vertices so you do not go into an infinite loop!

• Either can be used to determine connectivity:
 – Is there a path between two given vertices?
 – Is the graph (weakly) connected?

• Which one:
 – Uses a queue?
 – Uses a stack?
 – Always finds the shortest path (for unweighted graphs)?