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Insertion Sort 

• What if first k elements of array are 
already sorted?
› 4, 7, 12, 5, 19, 16

• We can shift the tail of the sorted elements 
list down and then insert next element into 
proper position and we get k+1 sorted 
elements
› 4, 5, 7, 12, 19, 16
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“Divide and Conquer”

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves, 
recursively sort left and right halves, then 
merge two halves known as Mergesort

• Idea 2 : Partition array into small items and 
large items, then recursively sort the two sets 

known as Quicksort
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Mergesort

• Divide it in two at the midpoint
• Conquer each side in turn (by 

recursively sorting)
• Merge two halves together

8 2 9 4 5 3 1 6
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Mergesort Example

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2 9 4 5 3 1 6

2   8 4    9 3   5 1   6

2   4   8   9 1   3   5   6

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6
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Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

Auxiliary array
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Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 Auxiliary array
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Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 2 3 4 5 Auxiliary array
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Merging

i j

target

normal

i j

target

Left completed
firstcopy
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Merging

i j

target

Right completed
first

first

second
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Merging
Merge(A[], T[] : integer array, left, right : integer) : {
mid, i, j, k, l, target : integer;
mid := (right + left)/2;
i := left; j := mid + 1; target := left;
while i < mid and j < right do
if A[i] < A[j] then T[target] := A[i] ; i:= i + 1; 
else T[target] := A[j]; j := j + 1;

target := target + 1;
if i > mid then //left completed//
for k := left to target-1 do A[k] := T[k];

if j > right then //right completed//
k : = mid; l := right;
while k > i do A[l] := A[k]; k := k-1; l := l-1;
for k := left to target-1 do A[k] := T[k];

}
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Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
if left < right then

mid := (left + right)/2;
Mergesort(A,T,left,mid);
Mergesort(A,T,mid+1,right);
Merge(A,T,left,right);

}

MainMergesort(A[1..n]: integer array, n : integer) : {
T[1..n]: integer array;
Mergesort[A,T,1,n];

}



13

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8
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Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

copy
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Iterative pseudocode

• Sort(array A of length N)
› Let m = 2, let B be temp array of length N
› While m<N

• For i = 1…N in increments of m
– merge A[i…i+m/2] and A[i+m/2…i+m] into B[i…i+m]

• Swap role of A and B
• m=m*2

› If needed, copy B back to A
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Mergesort Analysis

• Let T(N) be the running time for an 
array of N elements

• Mergesort divides array in half and calls 
itself on the two halves. After returning, 
it merges both halves using a temporary 
array

• Each recursive call takes T(N/2) and 
merging takes O(N)
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Mergesort Recurrence 
Relation

• The recurrence relation for T(N) is:
› T(1) < c  

• base case: 1 element array constant time

› T(N) < 2T(N/2) + dN
• Sorting n elements takes 

– the time to sort the left half 
– plus the time to sort the right half 
– plus an O(N) time to merge the two halves

• T(N) = O(N log N)
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Properties of Mergesort

• Not in-place
› Requires an auxiliary array

• Very few comparisons
• Iterative Mergesort reduces copying.
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Quicksort

• Quicksort uses a divide and conquer strategy, 
but does not require the O(N) extra space 
that MergeSort does
› Partition array into left and right sub-arrays

• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays
› Concatenate left and right sub-arrays in O(1) time
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“Four easy steps”

• To sort an array S
› If the number of elements in S is 0 or 1, 

then return.  The array is sorted.
› Pick an element v in S.  This is the pivot

value.
› Partition S-{v} into two disjoint subsets, S1

= {all values x≤v}, and S2 = {all values x≥v}.
› Return QuickSort(S1), v, QuickSort(S2)
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The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2 partition S

13 4331 57260

S1
81 927565

S2
QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto!  S is sorted
[Weiss]
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Details, details
• “The algorithm so far lacks quite a few 

of the details”
• Picking the pivot

› want a value that will cause |S1| and |S2| to 
be non-zero, and close to equal in size if 
possible

• Implementing the actual partitioning
• Dealing with cases where the element 

equals the pivot
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Alternative Pivot Rules

• Chose A[left]
› Fast, but too biased, enables worst-case

• Chose A[random], left < random < right
› Completely unbiased
› Will cause relatively even split, but slow

• Median of three, A[left], A[right], 
A[(left+right)/2]
› The standard, tends to be unbiased, and does a 

little sorting on the side.
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Quicksort Partitioning
• Need to partition the array into left and right sub-

arrays
› the elements in left sub-array are ≤ pivot
› elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
› Choose an element from the array as the pivot
› Make one pass through the rest of the array and 

swap as needed to put elements in partitions
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8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

Example

Choose the pivot as the median of three.

Place the pivot and the largest at the right
and the smallest at the left
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Partitioning is done In-Place
• One implementation (there are others)

› median3 finds pivot and sorts left, center, right
› Swap pivot with next to last element
› Set pointers i and j to start and end of array
› Increment i until you hit element A[i] > pivot
› Decrement j until you hit element A[j] < pivot
› Swap A[i] and A[j]
› Repeat until i and j cross
› Swap pivot (= A[N-2]) with A[i]
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Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

Move i to the right to be larger than pivot.
Move j to the left to be smaller than pivot.
Swap
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0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

i j

Example
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Recursive Quicksort
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
Quicksort(A, left, pivotindex – 1);
Quicksort(A, pivotindex + 1, right);

else
Insertionsort(A,left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.
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Quicksort Best Case 
Performance

• Algorithm always chooses best pivot 
and splits sub-arrays in half at each 
recursion
› T(0) = T(1) = O(1)

• constant time if 0 or 1 element
› For N > 1, 2 recursive calls plus linear time 

for partitioning
› T(N) = 2T(N/2) + O(N)

• Same recurrence relation as Mergesort
› T(N) = O(N log N)
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Quicksort Worst Case 
Performance

• Algorithm always chooses the worst pivot –
one sub-array is empty at each recursion
› T(N) ≤ a for N ≤ C
› T(N) ≤ T(N-1) + bN
› ≤ T(N-2) + b(N-1) + bN
› ≤ T(C) + b(C+1)+ … + bN
› ≤ a +b(C + C+1 + C+2 +  … + N)
› T(N) = O(N2)

• Fortunately, average case performance is O(N 
log N) (see text for proof)
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Properties of Quicksort

• No iterative version (without using a 
stack).

• Pure quicksort not good for small 
arrays.

• “In-place”, but uses auxiliary storage 
because of recursive calls.

• O(n log n) average case performance, 
but O(n2) worst case performance.
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Folklore

• “Quicksort is the best in-memory sorting 
algorithm.”

• Mergesort and Quicksort make different 
tradeoffs regarding the cost of 
comparison and the cost of a swap


