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Insertion Sort

o What If first k elements of array are
already sorted?

>4, 7,12, 5,19, 16

 \WWe can shift the tail of the sorted elements
list down and then insert next element into
proper position and we get k+1 sorted
elements

>4,5,7,12,19, 16




“Divide and Conquer”

Very important strategy in computer science:
> Divide problem into smaller parts

> Independently solve the parts

> Combine these solutions to get overall solution

ldea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves - known as Mergesort

ldea 2 : Partition array into small items and
large items, then recursively sort the two sets
- known as Quicksort



Mergesort
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Mergesort Example
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Auxiliary Array

 The merging requires an auxiliary array.
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 The merging requires an auxiliary array.
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Auxiliary Array

 The merging requires an auxiliary array.
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Merging
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Merging
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Merging

Merge(A[], T[] : integer array, left, right : integer) : {
mid, 1, jJ, k, 1, target : integer;
mid = (right + left)/2;
1 ;= left; jJ = mid + 1; target :
while 1 < mid and j < right do
iIT A[1] < A[j] then T[target] = A[i1] ; 1:= 1 + 1;
else T[target] := A[jl:; 3 =3 + 1;
target :-= target + 1;
iIT 1 > mid then //left completed//
for k = left to target-1 do A[k] := T[K];
1T J > right then //right completed//
k - = mid; 1 -= right;
while k > 1 do A[I] = A[K]; k = k-1; I = I-1;
for k = left to target-1 do A[k] := T[K];

left;
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Recursive Mergesort

Mergesort(A[], T[] : integer array,

iIT left < right then

mid = (left + right)/2;
Mergesort(A,T, left,mid);
Mergesort(A,T,mid+1,right);
Merge(A,T, left,right);

}

MainMergesort(A[l..n]:

integer array, n :

T[1..n]: integer array;

Mergesort[A,T,1,n];
+

left, right - iInteger) : {

integer) : {
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lterative Mergesort
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lterative Mergesort
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lterative pseudocode

o Sort(array A of length N)
> Let m = 2, let B be temp array of length N

> While m<N
e Fori=1...Nin increments of m
— merge Ali...i+m/2] and A[i+m/2...i+m] into BJi...i+m]
 Swap role of Aand B
° M=Mm*2
> |If needed, copy B back to A
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Mergesort Analysis

e Let T(N) be the running time for an
array of N elements

 Mergesort divides array In half and calls
itself on the two halves. After returning,
It merges both halves using a temporary
array

 Each recursive call takes T(N/2) and
merging takes O(N)
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Mergesort Recurrence
Relation

* The recurrence relation for T(N) is:
> T(1) <c
e base case: 1 element array - constant time
> T(N) < 2T(N/2) + dN

e Sorting n elements takes
— the time to sort the left half
— plus the time to sort the right half
— plus an O(N) time to merge the two halves

e T(N) =O(N log N)
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Properties of Mergesort

* Not in-place
> Requires an auxiliary array
e Very few comparisons

* lterative Mergesort reduces copying.
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Quicksort

* Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does

> Partition array into left and right sub-arrays
 the elements in left sub-array are all less than pivot
e elements in right sub-array are all greater than pivot

> Recursively sort left and right sub-arrays
> Concatenate left and right sub-arrays in O(1) time
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“Four easy steps”

e Tosortanarray S

> |f the number of elementsin Sis0 or 1,
then return. The array Is sorted.

> Pick an elementvin S. This is the pivot
value.

> Partition S-{v} into two disjoint subsets, S,
= {all values x<v}, and S, = {all values x>v}.

> Return QuickSort(S;), v, QuickSort(S,)
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The steps of QuickSort

S 81 31 57 select pivot value
92 0
2 @

QuickSort(S;) and

QuickSort(S,)
S @1 43 57 65 @ Presto! S is sorted
[Weiss]
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Detalls, detalls

“The algorithm so far lacks quite a few
of the detalls”

Picking the pivot
> want a value that will cause |S;| and |S,| to

be non-zero, and close to equal in size if
possible

Implementing the actual partitioning

Dealing with cases where the element
equals the pivot

22



Alternative Pivot Rules

e Chose Alleft]
> Fast, but too biased, enables worst-case

 Chose Afrandom], left < random < right
> Completely unbiased
> WIll cause relatively even split, but slow
 Median of three, Alleft], A[right],
A[(left+right)/2]

> The standard, tends to be unbiased, and does a
little sorting on the side.
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Quicksort Partitioning

Need to partition the array into left and right sub-
arrays

> the elements in left sub-array are < pivot

> elements in right sub-array are > pivot

How do the elements get to the correct partition?
> Choose an element from the array as the pivot

> Make one pass through the rest of the array and
swap as needed to put elements in partitions
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Example

Choose the pivot as the median of three.

Place the pivot and the largest at the right
and the smallest at the left
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Partitioning Is done In-Place

One implementation (there are others)

> median3 finds pivot and sorts left, center, right
> Swap pivot with next to last element

> Set pointers 1 and j to start and end of array

> Increment | until you hit element A[i] > pivot

>  Decrement j until you hit element A[j] < pivot

> Swap AJi] and A[j]

> Repeat until i and j cross

> Swap pivot (= A[N-2]) with A[i]
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Example

i J
n
0 1 4 9 7 3 5 2\6/8
: -
0 1 4 9 7 3 5 2\6/8
i i
o
0 1 4 9 7 3 5 2\6/8
i J
o
0 1 4 2 7 3 5 9\6/8

Move i to the right to be larger than pivot.
Move | to the left to be smaller than pivot.
Swap
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Example
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Recursive Quicksort

Quicksort(A[]:

integer array, left,right - integer): {

pivotindex : iInteger;
iT left + CUTOFF < right then
pivot := median3(A, left,right);

pivotindex :
Quicksort(A,

Partition(A, left,right-1,pivot);
left, pivotindex — 1);

Quicksort(A, pivotindex + 1, right);

else

Insertionsort(A, left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.
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Quicksort Best Case
Performance

o Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
> T(0) =T(1) = O(1)

e constant time if O or 1 element

> For N > 1, 2 recursive calls plus linear time
for partitioning
> T(N) = 2T(N/2) + O(N)
e Same recurrence relation as Mergesort
> T(N) = O(N log N)
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Quicksort Worst Case
Performance

« Algorithm always chooses the worst pivot —
one sub-array Is empty at each recursion
> TIN)<aforN<C
> T(N) < T(N-1) + bN

> < T(N-2) + b(N-1) + bN
> <T(C) + b(C+1)+ ... + bN
> <a+b(C+C+1+C+2+ ... +N)

> T(N) = O(N?)
* Fortunately, average case performance is O(N
log N) (see text for proof)
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Properties of Quicksort

No iterative version (without using a
stack).

Pure guicksort not good for small
arrays.

“In-place”, but uses auxiliary storage
because of recursive calls.

O(n log n) average case performance,
but O(n?) worst case performance.
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Folklore

 “Quicksort is the best in-memory sorting
algorithm.”

 Mergesort and Quicksort make different
tradeoffs regarding the cost of
comparison and the cost of a swap
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