
Divide and Conquer Sorting

CSE 326
Data Structures

Lecture 18

2

Insertion Sort

• What if first k elements of array are
already sorted?
› 4, 7, 12, 5, 19, 16

• We can shift the tail of the sorted elements
list down and then insert next element into
proper position and we get k+1 sorted
elements
› 4, 5, 7, 12, 19, 16

3

“Divide and Conquer”

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves known as Mergesort

• Idea 2 : Partition array into small items and
large items, then recursively sort the two sets

known as Quicksort

4

Mergesort

• Divide it in two at the midpoint
• Conquer each side in turn (by

recursively sorting)
• Merge two halves together

8 2 9 4 5 3 1 6

5

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

6

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

Auxiliary array

7

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 Auxiliary array

8

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 2 3 4 5 Auxiliary array

9

Merging

i j

target

normal

i j

target

Left completed
firstcopy

10

Merging

i j

target

Right completed
first

first

second

11

Merging
Merge(A[], T[] : integer array, left, right : integer) : {
mid, i, j, k, l, target : integer;
mid := (right + left)/2;
i := left; j := mid + 1; target := left;
while i < mid and j < right do
if A[i] < A[j] then T[target] := A[i] ; i:= i + 1;
else T[target] := A[j]; j := j + 1;

target := target + 1;
if i > mid then //left completed//
for k := left to target-1 do A[k] := T[k];

if j > right then //right completed//
k : = mid; l := right;
while k > i do A[l] := A[k]; k := k-1; l := l-1;
for k := left to target-1 do A[k] := T[k];

}

12

Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
if left < right then

mid := (left + right)/2;
Mergesort(A,T,left,mid);
Mergesort(A,T,mid+1,right);
Merge(A,T,left,right);

}

MainMergesort(A[1..n]: integer array, n : integer) : {
T[1..n]: integer array;
Mergesort[A,T,1,n];

}

13

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

14

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

copy

15

Iterative pseudocode

• Sort(array A of length N)
› Let m = 2, let B be temp array of length N
› While m<N

• For i = 1…N in increments of m
– merge A[i…i+m/2] and A[i+m/2…i+m] into B[i…i+m]

• Swap role of A and B
• m=m*2

› If needed, copy B back to A

16

Mergesort Analysis

• Let T(N) be the running time for an
array of N elements

• Mergesort divides array in half and calls
itself on the two halves. After returning,
it merges both halves using a temporary
array

• Each recursive call takes T(N/2) and
merging takes O(N)

17

Mergesort Recurrence
Relation

• The recurrence relation for T(N) is:
› T(1) < c

• base case: 1 element array constant time

› T(N) < 2T(N/2) + dN
• Sorting n elements takes

– the time to sort the left half
– plus the time to sort the right half
– plus an O(N) time to merge the two halves

• T(N) = O(N log N)

18

Properties of Mergesort

• Not in-place
› Requires an auxiliary array

• Very few comparisons
• Iterative Mergesort reduces copying.

19

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does
› Partition array into left and right sub-arrays

• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays
› Concatenate left and right sub-arrays in O(1) time

20

“Four easy steps”

• To sort an array S
› If the number of elements in S is 0 or 1,

then return. The array is sorted.
› Pick an element v in S. This is the pivot

value.
› Partition S-{v} into two disjoint subsets, S1

= {all values x≤v}, and S2 = {all values x≥v}.
› Return QuickSort(S1), v, QuickSort(S2)

21

The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2 partition S

13 4331 57260

S1
81 927565

S2
QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted
[Weiss]

22

Details, details
• “The algorithm so far lacks quite a few

of the details”
• Picking the pivot

› want a value that will cause |S1| and |S2| to
be non-zero, and close to equal in size if
possible

• Implementing the actual partitioning
• Dealing with cases where the element

equals the pivot

23

Alternative Pivot Rules

• Chose A[left]
› Fast, but too biased, enables worst-case

• Chose A[random], left < random < right
› Completely unbiased
› Will cause relatively even split, but slow

• Median of three, A[left], A[right],
A[(left+right)/2]
› The standard, tends to be unbiased, and does a

little sorting on the side.

24

Quicksort Partitioning
• Need to partition the array into left and right sub-

arrays
› the elements in left sub-array are ≤ pivot
› elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
› Choose an element from the array as the pivot
› Make one pass through the rest of the array and

swap as needed to put elements in partitions

25

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

Example

Choose the pivot as the median of three.

Place the pivot and the largest at the right
and the smallest at the left

26

Partitioning is done In-Place
• One implementation (there are others)

› median3 finds pivot and sorts left, center, right
› Swap pivot with next to last element
› Set pointers i and j to start and end of array
› Increment i until you hit element A[i] > pivot
› Decrement j until you hit element A[j] < pivot
› Swap A[i] and A[j]
› Repeat until i and j cross
› Swap pivot (= A[N-2]) with A[i]

27

Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

Move i to the right to be larger than pivot.
Move j to the left to be smaller than pivot.
Swap

28

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 5 3 7 9 6 8

i j

Example

29

Recursive Quicksort
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
Quicksort(A, left, pivotindex – 1);
Quicksort(A, pivotindex + 1, right);

else
Insertionsort(A,left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

30

Quicksort Best Case
Performance

• Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
› T(0) = T(1) = O(1)

• constant time if 0 or 1 element
› For N > 1, 2 recursive calls plus linear time

for partitioning
› T(N) = 2T(N/2) + O(N)

• Same recurrence relation as Mergesort
› T(N) = O(N log N)

31

Quicksort Worst Case
Performance

• Algorithm always chooses the worst pivot –
one sub-array is empty at each recursion
› T(N) ≤ a for N ≤ C
› T(N) ≤ T(N-1) + bN
› ≤ T(N-2) + b(N-1) + bN
› ≤ T(C) + b(C+1)+ … + bN
› ≤ a +b(C + C+1 + C+2 + … + N)
› T(N) = O(N2)

• Fortunately, average case performance is O(N
log N) (see text for proof)

32

Properties of Quicksort

• No iterative version (without using a
stack).

• Pure quicksort not good for small
arrays.

• “In-place”, but uses auxiliary storage
because of recursive calls.

• O(n log n) average case performance,
but O(n2) worst case performance.

33

Folklore

• “Quicksort is the best in-memory sorting
algorithm.”

• Mergesort and Quicksort make different
tradeoffs regarding the cost of
comparison and the cost of a swap

