Divide and Conquer Sorting

CSE 326
Data Structures
Lecture 18

Insertion Sort

o What If first k elements of array are
already sorted?

>4, 7,12, 5,19, 16

 \WWe can shift the tail of the sorted elements
list down and then insert next element into
proper position and we get k+1 sorted
elements

>4,5,7,12,19, 16

“Divide and Conquer”

Very important strategy in computer science:
> Divide problem into smaller parts

> Independently solve the parts

> Combine these solutions to get overall solution

ldea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves - known as Mergesort

ldea 2 : Partition array into small items and
large items, then recursively sort the two sets
- known as Quicksort

Mergesort

8121945316

N

Divide it In two at the midpoint

Conguer each side In turn (by
recursively sorting)

Merge two halves together

Mergesort Example

812945316

Divide -

. 82 9 4 5316

Divide — T NG
Divid 8 2 9 4 2 3 16
Ivide 7\ O\ N 7\
lelement 8 2 9 4 5 3 1 6
Merge AW \/ AW W4
€ 28 4 9 35 16

Merge 135 6

\/
Merge 1 5 3745 6 8 9

Auxiliary Array

 The merging requires an auxiliary array.

2 | 4

8

9

1

3

5

6

/

Auxiliary array

Auxiliary Array

 The merging requires an auxiliary array.

21418/9|1|3|5]|6
/ /!
1

Auxiliary array

Auxiliary Array

 The merging requires an auxiliary array.

21418/9|1|3|5]|6
/ /!
1123|415

Auxiliary array

Merging

i] normal

Left completed
first

target

Merging

first

P —~

secondf | j " Right completed

first

e

target

10

Merging

Merge(A[], T[] : integer array, left, right : integer) : {
mid, 1, jJ, k, 1, target : integer;
mid = (right + left)/2;
1 ;= left; jJ = mid + 1; target :
while 1 < mid and j < right do
iIT A[1] < A[j] then T[target] = A[i1] ; 1:= 1 + 1;
else T[target] := A[jl:; 3 =3 + 1;
target :-= target + 1;
iIT 1 > mid then //left completed//
for k = left to target-1 do A[k] := T[K];
1T J > right then //right completed//
k - = mid; 1 -= right;
while k > 1 do A[I] = A[K]; k = k-1; I = I-1;
for k = left to target-1 do A[k] := T[K];

left;

11

Recursive Mergesort

Mergesort(A[], T[] : integer array,

iIT left < right then

mid = (left + right)/2;
Mergesort(A,T, left,mid);
Mergesort(A,T,mid+1,right);
Merge(A,T, left,right);

}

MainMergesort(A[l..n]:

integer array, n :

T[1..n]: integer array;

Mergesort[A,T,1,n];
+

left, right - iInteger) : {

integer) : {

12

lterative Mergesort

YaY:

YaY:

YaY:

YaY:

v/

v/

v/

v/

\

Y

\

Y

Y

Merge by 1
Merge by 2
Merge by 4

Merge by 8

13

lterative Mergesort

WA AW WA WA W AW AW AW W AW W W WY Merge by 1
VYOS S S v S S) Mergeby 2
\ Y \ Y \ Y \ Y/ Merge by 4

\ 7 \ % Merge by 8

) 7 Merge by 16

| copy

14

lterative pseudocode

o Sort(array A of length N)
> Let m = 2, let B be temp array of length N

> While m<N
e Fori=1...Nin increments of m
— merge Ali...i+m/2] and A[i+m/2...i+m] into BJi...i+m]
 Swap role of Aand B
° M=Mm*2
> |If needed, copy B back to A

15

Mergesort Analysis

e Let T(N) be the running time for an
array of N elements

 Mergesort divides array In half and calls
itself on the two halves. After returning,
It merges both halves using a temporary
array

 Each recursive call takes T(N/2) and
merging takes O(N)

16

Mergesort Recurrence
Relation

* The recurrence relation for T(N) is:
> T(1) <c
e base case: 1 element array - constant time
> T(N) < 2T(N/2) + dN

e Sorting n elements takes
— the time to sort the left half
— plus the time to sort the right half
— plus an O(N) time to merge the two halves

e T(N) =O(N log N)

17

Properties of Mergesort

* Not in-place
> Requires an auxiliary array
e Very few comparisons

* lterative Mergesort reduces copying.

18

Quicksort

* Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does

> Partition array into left and right sub-arrays
 the elements in left sub-array are all less than pivot
e elements in right sub-array are all greater than pivot

> Recursively sort left and right sub-arrays
> Concatenate left and right sub-arrays in O(1) time

19

“Four easy steps”

e Tosortanarray S

> |f the number of elementsin Sis0 or 1,
then return. The array Is sorted.

> Pick an elementvin S. This is the pivot
value.

> Partition S-{v} into two disjoint subsets, S,
= {all values x<v}, and S, = {all values x>v}.

> Return QuickSort(S;), v, QuickSort(S,)

20

The steps of QuickSort

S 81 31 57 select pivot value
92 0
2 @

QuickSort(S;) and

QuickSort(S,)
S @1 43 57 65 @ Presto! S is sorted
[Weiss]

21

Detalls, detalls

“The algorithm so far lacks quite a few
of the detalls”

Picking the pivot
> want a value that will cause |S;| and |S,| to

be non-zero, and close to equal in size if
possible

Implementing the actual partitioning

Dealing with cases where the element
equals the pivot

22

Alternative Pivot Rules

e Chose Alleft]
> Fast, but too biased, enables worst-case

 Chose Afrandom], left < random < right
> Completely unbiased
> WIll cause relatively even split, but slow
 Median of three, Alleft], A[right],
A[(left+right)/2]

> The standard, tends to be unbiased, and does a
little sorting on the side.

23

Quicksort Partitioning

Need to partition the array into left and right sub-
arrays

> the elements in left sub-array are < pivot

> elements in right sub-array are > pivot

How do the elements get to the correct partition?
> Choose an element from the array as the pivot

> Make one pass through the rest of the array and
swap as needed to put elements in partitions

24

Example

Choose the pivot as the median of three.

Place the pivot and the largest at the right
and the smallest at the left

25

Partitioning Is done In-Place

One implementation (there are others)

> median3 finds pivot and sorts left, center, right
> Swap pivot with next to last element

> Set pointers 1 and j to start and end of array

> Increment | until you hit element A[i] > pivot

> Decrement j until you hit element A[j] < pivot

> Swap AJi] and A[j]

> Repeat until i and j cross

> Swap pivot (= A[N-2]) with A[i]

26

Example

i J
n
0 1 4 9 7 3 5 2\6/8
: -
0 1 4 9 7 3 5 2\6/8
i i
o
0 1 4 9 7 3 5 2\6/8
i J
o
0 1 4 2 7 3 5 9\6/8

Move i to the right to be larger than pivot.
Move | to the left to be smaller than pivot.
Swap

27

Example

6)
1|4|2|7/3|5[/9(6])38
i]

6)
1|4|2|7|3|5/9(6)8
I J

6)
14253 |7/9(6)38

]

1425379/6\8

N
j 1
N
1|42 |5|8|7|9(6)s
j 1
1|4|2|5|3|6|9|7]s
//\)
Y Y

S, <pivot PIvot S > pivot

Recursive Quicksort

Quicksort(A[]:

integer array, left,right - integer): {

pivotindex : iInteger;
iT left + CUTOFF < right then
pivot := median3(A, left,right);

pivotindex :
Quicksort(A,

Partition(A, left,right-1,pivot);
left, pivotindex — 1);

Quicksort(A, pivotindex + 1, right);

else

Insertionsort(A, left,right);

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

29

Quicksort Best Case
Performance

o Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
> T(0) =T(1) = O(1)

e constant time if O or 1 element

> For N > 1, 2 recursive calls plus linear time
for partitioning
> T(N) = 2T(N/2) + O(N)
e Same recurrence relation as Mergesort
> T(N) = O(N log N)

30

Quicksort Worst Case
Performance

« Algorithm always chooses the worst pivot —
one sub-array Is empty at each recursion
> TIN)<aforN<C
> T(N) < T(N-1) + bN

> < T(N-2) + b(N-1) + bN
> <T(C) + b(C+1)+ ... + bN
> <a+b(C+C+1+C+2+ ... +N)

> T(N) = O(N?)
* Fortunately, average case performance is O(N
log N) (see text for proof)

31

Properties of Quicksort

No iterative version (without using a
stack).

Pure guicksort not good for small
arrays.

“In-place”, but uses auxiliary storage
because of recursive calls.

O(n log n) average case performance,
but O(n?) worst case performance.

32

Folklore

 “Quicksort is the best in-memory sorting
algorithm.”

 Mergesort and Quicksort make different
tradeoffs regarding the cost of
comparison and the cost of a swap

33

