CSE 326: Data Structures
Disjoint Union/Find

James Fogarty
Autumn 2007
Weighted Union

- Weighted Union
 - Always point the smaller tree to the root of the larger tree

```
W-Union(1,7)
```

```
1  3  4
  v  v
2  5  6
  v  v
  2  4
```

W-Union(1,7)
A Bad Case

\[\text{Union}(1, 2) \]
\[\text{Union}(2, 3) \]
\[\vdots \]
\[\text{Union}(n-1, n) \]
\[\text{Find}(1) \, \text{n steps!!} \]
Example Again

Union(1,2)

Union(2,3)

Union(n-1,n)

Find(1) constant time
Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - Basis: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all $h' < h$.

Minimum weight up-tree of height h formed by weighted unions

$W(T_1) \geq W(T_2) \geq 2^{h-1}$

Weighted union

Induction hypothesis

$W(T) \geq 2^{h-1} + 2^{h-1} = 2^h$
Analysis of Weighted Union

• Let T be an up-tree of weight n formed by weighted union. Let h be its height.
 • \(n \geq 2^h \)
 • \(\log_2 n \geq h \)
 • \(\text{Find}(x) \) in tree T takes \(O(\log n) \) time.
 • Can we do better?
Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions
Example of Worst Cast (cont’)

After \(n - 1 = n/2 + n/4 + \ldots + 1 \) Weighted Unions

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).
Elegant Array Implementation

up weight
1 2 3 4 5 6 7
0 1 0 7 7 5 0
2 1

2 1 3 4 5 6 7
Weighted Union

W-Union(i,j : index){
 //i and j are roots//
 wi := weight[i];
 wj := weight[j];
 if wi < wj then
 up[i] := j;
 weight[j] := wi + wj;
 else
 up[j] := i;
 weight[i] := wi + wj;
}
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Self-Adjustment Works

PC-Find(x)
Draw the result of Find(e):
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ 0 do //find root//
 r := up[r];
 if i ≠ r then //compress path//
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}
Interlude: A Really Slow Function

Ackermann’s function is a really big function $A(x, y)$ with inverse $\alpha(x, y)$ which is really small.

How fast does $\alpha(x, y)$ grow?

$\alpha(x, y) = 4$ for x far larger than the number of atoms in the universe (2^{300})

α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences
A More Comprehensible Slow Function

\[\log^* x = \text{number of times you need to compute } \log \text{ to bring value down to at most 1} \]

E.g. \(\log^* 2 = 1 \)
\[\log^* 4 = \log^* 2^2 = 2 \]
\[\log^* 16 = \log^* 2^{2^2} = 3 \quad \text{(log log log 16 = 1)} \]
\[\log^* 65536 = \log^* 2^{2^{2^2}} = 4 \quad \text{(log log log log 65536 = 1)} \]
\[\log^* 2^{65536} = \ldots \ldots = 5 \]

Take this: \(\alpha(m,n) \) grows even slower than \(\log^* n \)!!
Disjoint Union / Find with Weighted Union and PC

• Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.

• Time complexity for $m \geq n$ operations on n elements is $O(m \log^* n)$
 – $\log^* n < 7$ for all reasonable n. Essentially constant time per operation!

• Using “ranked union” gives an even better bound theoretically.
Sorting: The Big Picture

Given \(n \) comparable elements in an array, sort them in an increasing order.

Simple algorithms: \(O(n^2) \)
- Insertion sort
- Selection sort
- Bubble sort
- Shell sort

Fancier algorithms: \(O(n \log n) \)
- Heap sort
- Merge sort
- Quick sort
- ... (more fancier algorithms)

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)
- Bucket sort
- Radix sort
- ... (more specialized algorithms)

Handling huge data sets
- External sorting
Insertion Sort: Idea

• At the k^{th} step, put the k^{th} input element in the correct place among the first k elements

• Result: After the k^{th} step, the first k elements are sorted.

Runtime:

worst case :
best case :
average case :
Selection Sort: idea

• Find the smallest element, put it 1st
• Find the next smallest element, put it 2nd
• Find the next smallest, put it 3rd
• And so on …
Selection Sort: Code

```c
void SelectionSort (Array a[0..n-1]) {
    for (i=0, i<n; ++i) {
        j = Find index of smallest entry in a[i..n-1]
        Swap(a[i],a[j])
    }
}
```

Runtime:

- **worst case**:
- **best case**:
- **average case**:

21
Try it out: Selection sort

• 31, 16, 54, 4, 2, 17, 6
Example
Example
Try it out: Insertion sort

- 31, 16, 54, 4, 2, 17, 6
HeapSort: Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:
Try it out: Heap sort

- 31, 16, 54, 4, 2, 17, 6