AVL Trees Revisited

• Balance condition:
 Left and right subtrees of every node have heights differing by at most 1
 – Strong enough : Worst case depth is $O(\log n)$
 – Easy to maintain : one single or double rotation

• Guaranteed $O(\log n)$ running time for
 – Find ?
 – Insert ?
 – Delete ?
 – buildTree ? $\Theta(n \log n)$
Single and Double Rotations
AVL Trees Revisited

• What *extra info* did we maintain in each node?

• *Where* were rotations performed?

• How did we *locate* this node?
Other Possibilities?

• Could use different balance conditions, different ways to maintain balance, different guarantees on running time, …

• Why aren’t AVL trees perfect? Extra info, complex logic to detect imbalance, recursive bottom-up implementation

• Many other balanced BST data structures
 – Red-Black trees
 – AA trees
 – Splay Trees
 – 2-3 Trees
 – B-Trees
 – …
Splay Trees

- Blind adjusting version of AVL trees
 - Why worry about balances? Just rotate anyway!
- *Amortized* time per operations is $O(\log n)$
- Worst case time per operation is $O(n)$
 - But guaranteed to happen rarely

Insert/Find always rotate node to the root!

SAT/GRE Analogy question:

AVL is to Splay trees as ____________ is to ____________

Leftish heap : Skew heap
Recall: Amortized Complexity

If a sequence of M operations takes $O(M f(n))$ time, we say the amortized runtime is $O(f(n))$.

- Worst case time *per operation* can still be large, say $O(n)$
- Worst case time for *any sequence* of M operations is $O(M f(n))$

Average time *per operation* for *any sequence* is $O(f(n))$
Recall: Amortized Complexity

- Is amortized guarantee any weaker than worstcase? Yes, it is only for sequences
- Is amortized guarantee any stronger than averagecase? Yes, guarantees no bad sequences
- Is average case guarantee good enough in practice? No, adversarial input, bad day, …
- Is amortized guarantee good enough in practice? Yes, again, no bad sequences
If you’re forced to make a really deep access:

Since you’re down there anyway, fix up a lot of deep nodes!
Find/Insert in Splay Trees

1. **Find** or **insert** a node \(k \)
2. **Splay** \(k \) **to the root using:**
 - zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, \(k \)
 - Great if \(k \) is accessed again

2. And helps many others!
 - Great if many others on the path are accessed
Splaying node \(k \) to the root: Need to be careful!

One option (that we won’t use) is to repeatedly use AVL single rotation until \(k \) becomes the root: (see Section 4.5.1 for details)
Splaying node k to the root: Need to be careful!

What’s bad about this process?

r is pushed almost as low as k was
Bad seq: find(k), find(r), find(...), ...

12
Splay: Zig-Zag*

*Just like an…

AVL double rotation

Helps those in blue
Hurts those in red

Which nodes improve depth?

k and its original children
*Is this just two AVL single rotations in a row?

Not quite – we rotate g and p, then p and k

Why does this help?

Same number of nodes helped as hurt. But later rotations help the whole subtree.
Special Case for Root: Zig

Relative depth of p, Y, Z? Relative depth of everyone else?

- Down 1 level
- Much better

Why not drop zig-zig and just zig all the way?

- Zig only helps one child!
Splaying Example: Find(6)

Think of as if created by inserting 6,5,4,3,2,1 – each took constant time – a LOT of savings so far to amortize those bad accesses over
Still Splaying 6

Zig-zig
Finally…

Zig
Another Splay: Find(4)
Example Splayed Out

Zig-zag
But Wait…

What happened here?

Didn’t two find operations take linear time instead of logarithmic?

What about the amortized $O(\log n)$ guarantee?

That still holds, though we must take into account the previous steps used to create this tree. In fact, a splay tree, by construction, will never look like the example we started with!
Why Splaying Helps

• If a node n on the access path is at depth d before the splay, it’s at about depth $d/2$ after the splay

• Overall, nodes which are low on the access path tend to move closer to the root

• Splaying gets amortized $O(\log n)$ performance. (Maybe not now, but soon, and for the rest of the operations.)
Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
 – Less storage per node, easier to code

• Data accessed once, is often soon accessed again
 – Splaying does implicit caching by bringing it to the root
Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root
 - if node not found, splay what would have been its parent

What if we didn’t splay?

Amortized guarantee fails!
Bad sequence: find(leaf k), find(k), find(k), …
Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

What if we didn’t splay?

Amortized guarantee fails!
Bad sequence: insert(k), find(k), find(k), …
Splay Operations: Remove

Everything else splayed, so we’d better do that for remove

Now what?
Join

Join(L, R):

given two trees such that (stuff in L) < (stuff in R), merge them:

Splay on the maximum element in L, then attach R

Similar to BST delete – find max = find element with no right child

Does this work to join any two trees? No, need L < R
Delete Example

Delete(4)

Find max

Find(4)
Splay Tree Summary

• All operations are in amortized $O(\log n)$ time

• Splaying can be done top-down; this may be better because:
 – only one pass
 – no recursion or parent pointers necessary
 – we didn’t cover top-down in class

• Splay trees are very effective search trees
 – Relatively simple
 – No extra fields required
 – Excellent locality properties:
 frequently accessed keys are cheap to find

Like what? Skew heaps! (don’t need to wait)

What happens to node that never get accessed?
(tend to drop to the bottom)
Splay E
Splay E