CSE 326: Data Structures
Binomial Queues

Peter Henry
on behalf of James Fogarty
Autumn 2007
Yet Another Data Structure: Binomial Queues

• Structural property
 – Forest of binomial trees with at most one tree of any height

• Order property
 – Each binomial tree has the heap-order property
The Binomial Tree, B_h

- B_h has height h and exactly 2^h nodes
- B_h is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children
- Number of nodes at depth d is binomial coeff. $\binom{h}{d}$
 - Hence the name; we will not use this last property
Binomial Queue with n elements

Binomial Q with n elements has a unique structural representation in terms of binomial trees!

Write n in binary: $n = 1101$ (base 2) = 13 (base 10)
Properties of Binomial Queue

• At most one binomial tree of any height

• \(n \) nodes \(\Rightarrow \) binary representation is of size \(?\)
 \(\Rightarrow \) deepest tree has height \(?\)
 \(\Rightarrow \) number of trees is \(?\)

Define: \(\text{height(forest } F) = \max_{\text{tree } T \text{ in } F} \{ \text{height}(T) \} \)

Binomial Q with \(n \) nodes has height \(\Theta(\log n) \)
Operations on Binomial Queue

• Will again define \textit{merge} as the base operation
 – insert, deleteMin, buildBinomialQ will use merge

• Can we do increaseKey efficiently? decreaseKey?

• What about findMin?
Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 0 to maxheight {
 a. $m \leftarrow$ total number of B_k’s in the two BQs
 b. if $m=0$: continue;
 c. if $m=1$: continue;
 d. if $m=2$: combine the two B_k’s to form a B_{k+1}
 e. if $m=3$: retain one B_k and combine the other two to form a B_{k+1}
}

Claim: When this process ends, the forest has at most one tree of any height
Example: Binomial Queue Merge

H1:

H2:
Example: Binomial Queue Merge

H1:

H2:
Example: Binomial Queue Merge

H1: H2:

-1

2 1 3 1

8 11 5 7 3

6 21 9 6

7
Complexity of Merge

Constant time for each height
Max number of heights is: $\log n$

\implies worst case running time $= \Theta(\quad)$
Insert in a Binomial Queue

Insert(x): Similar to leftist or skew heap

runtime

Worst case complexity: same as merge

O()

Average case complexity: O(1)

Why?? Hint: Think of adding 1 to 1101
deleteMin in Binomial Queue

Similar to leftist and skew heaps....
deleteMin: Example

find and delete smallest root

merge BQ (without the shaded part) and BQ'
deleteMin: Example

Result:

runtime: