CSE 326: Data Structures

Priority Queues
Leftist Heaps & Skew Heaps

Peter Henry
on behalf of James Fogarty
Autumn 2007
Outline

• Announcements
• Leftist Heaps
• Skew Heaps (if there’s time)
 – Reading: Weiss, Ch. 6
Announcements

• Written HW #2 – out now, due Friday
• Project #1 due Wednesday at midnight
• Project #2 Phase A out now
 – Can work in pairs; start figuring out who you’d like to work with or whether you want to go alone
 – Let us know by Friday, Oct 12
New Heap Operation: Merge

Given two heaps, merge them into one heap

– first attempt: insert each element of the smaller heap into the larger.

 runtime:

– second attempt: concatenate binary heaps’ arrays and run buildHeap.

 runtime:
Leftist Heaps

Idea:

Focus all heap maintenance work in one small part of the heap

Leftist heaps:

1. Most nodes are on the left
2. All the merging work is done on the right
Definition: Null Path Length

null path length (npl) of a node \(x \) = the number of nodes between \(x \) and a null in its subtree

OR

\(npl(x) = \text{min distance to a descendant with 0 or 1 children} \)

- \(npl(\text{null}) = -1 \)
- \(npl(\text{leaf}) = 0 \)
- \(npl(\text{single-child node}) = 0 \)

Equivalent definitions:

1. \(npl(x) \) is the height of largest complete subtree rooted at \(x \)
2. \(npl(x) = 1 + \text{min}\{npl(left(x)), npl(right(x))\} \)
Leftist Heap Properties

• Heap-order property
 – parent’s priority value is \leq to childrens’ priority values
 – result: minimum element is at the root

• Leftist property
 – For every node x, $npl(\text{left}(x)) \geq npl(\text{right}(x))$
 – result: tree is at least as “heavy” on the left as the right

Are leftist trees…
 complete?
 balanced?
Are These Leftist?

Every subtree of a leftist tree is leftist!
Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as *any* in the tree.

Proof: (By contradiction)

Pick a shorter path: $D_1 < D_2$

Say it diverges from right path at x

$npl(L) \leq D_1 - 1$ because of the path of length $D_1 - 1$ to null

$npl(R) \geq D_2 - 1$ because every node on right path is leftist

Leftist property at x violated!
Right Path in a Leftist Tree is Short (#2)

Claim: If the right path has r nodes, then the tree has at least $2^r - 1$ nodes.

Proof: (By induction)

Base case: $r=1$. Tree has at least $2^1 - 1 = 1$ node

Inductive step: assume true for $r' < r$. Prove for tree with right path at least r.

1. Right subtree: right path of $r-1$ nodes
 \[\Rightarrow 2^{r-1} - 1 \text{ right subtree nodes (by induction)} \]

2. Left subtree: also right path of length at least $r-1$ (by previous slide)
 \[\Rightarrow 2^{r-1} - 1 \text{ left subtree nodes (by induction)} \]

Total tree size: \[(2^{r-1} - 1) + (2^{r-1} - 1) + 1 = 2^r - 1\]
Why do we have the leftist property?

Because it guarantees that:

• the *right path is really short* compared to the number of nodes in the tree

• A leftist tree of N nodes, has a right path of at most $\lg (N+1)$ nodes

Idea – perform all work on the right path
Merge two heaps (basic idea)

- Put the smaller root as the new root,
- Hang its left subtree on the left.
- **Recursively** merge its right subtree and the other tree.
Merging Two Leftist Heaps

- \texttt{merge}(T_1, T_2) \text{ returns one leftist heap containing all elements of the two (distinct) leftist heaps } T_1 \text{ and } T_2
Merge Continued

If \(npl(R') > npl(L_1) \)

\[R' = \text{Merge}(R_1, T_2) \]

runtime:
Let’s do an example, but first…

Other Heap Operations

• insert ?

• deleteMin ?
Operations on Leftist Heaps

• **merge** with two trees of total size n: $O(\log n)$
• **insert** with heap size n: $O(\log n)$
 – pretend node is a size 1 leftist heap
 – insert by merging original heap with one node heap

• **deleteMin** with heap size n: $O(\log n)$
 – remove and return root
 – merge left and right subtrees
Leftest Merge Example

(special case)
Sewing Up the Example

Done?
Finally…
Leftist Heaps: Summary

Good

-
-

Bad

-
-
Random Definition: Amortized Time

am·or·ti·zed time:
Running time limit resulting from “writing off” expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total $O(M \log N)$ time, amortized time per operation is $O(\log N)$

Difference from average time:
Skew Heaps

Problems with leftist heaps
- extra storage for npl
- extra complexity/logic to maintain and check npl
- right side is “often” heavy and requires a switch

Solution: skew heaps
- “blindly” adjusting version of leftist heaps
- merge always switches children when fixing right path
- amortized time for: merge, insert, deleteMin = $O(\log n)$
- however, worst case time for all three = $O(n)$
Merging Two Skew Heaps

Only one step per iteration, with children always switched
Skew Heap Code

```c
void merge(heap1, heap2) {
    case {
        heap1 == NULL: return heap2;
        heap2 == NULL: return heap1;
        heap1.findMin() < heap2.findMin():
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge(heap2, temp);
            return heap1;
        otherwise:
            return merge(heap2, heap1);
    }
}
```
Runtime Analysis: Worst-case and Amortized

• No worst case guarantee on right path length!
• All operations rely on merge

⇒ worst case complexity of all ops =
• Probably won’t get to amortized analysis in this course, but see Chapter 11 if curious.
• Result: M merges take time $M \log n$

⇒ amortized complexity of all ops =
Comparing Heaps

• Binary Heaps

• Leftist Heaps

• d-Heaps

• Skew Heaps

Still room for improvement! (Where?)