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Linear Search vs Binary Search

Linear Search Binary Search
Best Case 4 at [O] 4 at [middle]
Worst Case 3n+2 4logn+ 4

So ... which algorithm is better?
What tradeoffs can you make?
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Fast Computer vs. Slow Computer
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Fast Computer vs. Smart Programmer
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Asymptotic Analysis

e Asymptotic analysis looks at the order
of the running time of the algorithm

— A valuable tool when the input gets “large”

— Ignores the effects of different machines or
different implementations of an algorithm

e Intuitively, to find the asymptotic
runtime, throw away the constants and

low-order terms
— Linear search is T(n) =3n + 2 € O(N)
— Binary search is T(n) = 4 log,n + 4 € O(log n)

Remember: the fastest algorithm has the
slowest growing function for its runtime
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Asymptotic Analysis

e Eliminate low order terms
—4n + 5 =
—05nlogn+2n+7 =
—n3+2"+ 3n=>

e Eliminate coefficients

—4n =
—0.5nlogn=
—nlog n? ==
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Properties of Logs

e log AB=1log A +logB
e Proof: A=2"%%B=2"%"
AB — 2I092A . 2'092 B — 2(|0g2 A+log, B)

. log AB =log A+log B
e Similarly:

—log(A/B) = log A — log B
— log(AB) = B log A

e Any log Is equivalent to log-base-2
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Order Notation: Intuition
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Although not yet apparent, as n gets “sufficiently

large”, f(n) will be “greater than or equal to” g(n)
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Definition of Order Notation

e Upper bound: T(n) = O(f(n)) Big-O
EXist positive constants ¢ and n’ such that
T(n) <cf(n) foralln>n’

e Lower bound: T(n) = «2(g((n)) Omega
EXist positive constants ¢ and n’ such that
T(n) 2cg(n) foralln >n’

e Tight bound: T(n) = 6(f(n)) Theta
When both hold:
T(n) = O(f(n))
T(n) = Xf(n))
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Definition of Order Notation

O( f(n) ) : aset or class of functions

g(n) € O(f(n) ) Iff there exist positive
consts c¢c and n, such that:

g(n) < c f(n) for all n > n,

Example:
100n2 + 1000 <5 (n® + 2n?) foralln > 19
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Order Notatlon Example
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100n? + 1000 <5 (n® + 2n?) foralln> 19

So f(n) € O(Cg(n))
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Some Notes on Notation

e Sometimes you’ll see

g(n) = 0O(1(n) )

e This Is equivalent to
g(n) € O(f(n) )
e \What about the reverse?

O(t(n) ) = g(n)
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Big-O:

— constant:

— logarithmic:
— linear:

— log-linear:
— quadratic:
— cubic:

— polynomial:
— exponential:
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Common Names

0O(1)

O(log n) (log,n, log n? € O(log n))
O(n)

O(n log n)

O(n?)

o(n3)

O(nk) (k is a constant)

O(c") (c is a constant > 1)
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Meet the Family

e O( f(n) ) is the set of all functions
asymptotically less than or equal to f(n)

—o( f(n) ) Is the set of all functions
asymptotically strictly less than f(n)

e Q( f(n) ) is the set of all functions
asymptotically greater than or equal to f(n)

—o( f(n) ) Is the set of all functions
asymptotically strictly greater than f(n)

e O( f(n) ) Is the set of all functions
asymptotically equal to f(n)

9/30/2007
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Meet the Family, Formally

g(n) € O(f(n) ) iff
There exist c and n, such that g(n) < c f(n) for all n 2 n,

— g(n) € o( f(n) ) iff
There exists a n, such that g(n) < c f(n) for all c and n > n,

Equivalent to: lim__,_ g(n)/f(n) =0

g(n) € Q( f(n) ) iff
There exist ¢c and n, such that g(n) = c f(n) for all n = n,

— g(n) € o( f(n) ) iff
There exists a n, such that g(n) = c f(n) for all c and n > n,

Equivalent to: lim,_,_ g(n)/f(n) = oo

g(n) e O( f(n) ) iff
g(n) € O(f(n) ) and g(n) € Q( f(n) )
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Big-Omega et al. Intuitively

Asymptotic Notation

Mathematics
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Relation
O <
Q >
0 —
o) <
® >
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Pros and Cons
of Asymptotic Analysis
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Perspective: Kinds of Analysis

e Running time may depend on actual
data input, not just length of input

e Distinguish
— Worst Case
e Your worst enemy is choosing input
— Best Case

— Average Case
e Assumes some probabilistic distribution of inputs

— Amortized
e Average time over many operations
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Types of Analysis

Two orthogonal axes:

— Bound Flavor
e Upper bound (O, o)
e Lower bound (Q, o)
e Asymptotically tight (0)

— Analysis Case
 Worst Case (Adversary)
e Average Case
 Best Case
e Amortized
9/30/2007
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16n3logg(10n4) + 100n% = O(n3log n)

e Eliminate 16n3%logg(10n?) + 100nN?
low-order = 16n3logg(10n?)
terms =2 n3logg(10n?)

> n3(logy(10) + logg(n?))
2 n3logg(10) + n3logg(n?)

e Eliminate = n3logg(n?)
constant > 2n3logg(n)
coefficients 2n°logg(n)

=>n3logg(2)log(n)
=2>n3log(n)/3
=2>n3log(n)
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e Should be started on Homework 1

e Priority Queues and Heaps up Next
(relevant to Project 2)
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