CSE 326: Data Structures

Asymptotic Analysis

James Fogarty
Autumn 2007
Lecture 3

Linear Search vs Binary Search

Linear Search Binary Search
Best Case 4 at [O] 4 at [middle]
Worst Case 3n+2 4logn+ 4

So ... which algorithm is better?
What tradeoffs can you make?
9/30/2007 2

Fast Computer vs. Slow Computer

linear search on Pentium-IV ——

500
450
400
350
300
250 ¢

time in ms

linear search on 486

20
elts to be searched

Fast Computer vs. Smart Programmer

time in ms

350

300

250 r

.}
o
o

(round 1)

linear search on Pentium-1V
binary search on 486

e

It

e—
e

40 60
elts to be searched

20

80

100

time in ms

Fast Computer vs. Smart Programmer

1000

800

600

400

200

elts to be searched

(round 2)
linear search on Pentium-IV A =
binary searchon486 —— / -
v /
e
//
f// ____________
,,,,,,, e
P fﬁf"_ﬂﬂrﬂ_ /r/
e 7
/ ,//f
,//
200 400 600 800 1000

Asymptotic Analysis

e Asymptotic analysis looks at the order
of the running time of the algorithm

— A valuable tool when the input gets “large”

— Ignores the effects of different machines or
different implementations of an algorithm

e Intuitively, to find the asymptotic
runtime, throw away the constants and

low-order terms
— Linear search is T(n) =3n + 2 € O(N)
— Binary search is T(n) = 4 log,n + 4 € O(log n)

Remember: the fastest algorithm has the
slowest growing function for its runtime

9/30/2007 6

Asymptotic Analysis

e Eliminate low order terms
—4n + 5 =
—05nlogn+2n+7 =
—n3+2"+ 3n=>

e Eliminate coefficients

—4n =
—0.5nlogn=
—nlog n? ==

9/30/2007

Properties of Logs

e log AB=1log A +logB
e Proof: A=2"%%B=2"%"
AB — 2I092A . 2'092 B — 2(|0g2 A+log, B)

. log AB =log A+log B
e Similarly:

—log(A/B) = log A — log B
— log(AB) = B log A

e Any log Is equivalent to log-base-2

9/30/2007

Order Notation: Intuition

12000 T

"3+ 2ntE ——
100n™2 + 1000 ——

10000

OO0

f(n) = n3 + 2n? 5000 -
g(n) =100n2+ 1000 ., |

2000

0

1 a 3 4 = = 7 g 9 10

Although not yet apparent, as n gets “sufficiently

large”, f(n) will be “greater than or equal to” g(n)
9/30/2007 9

Definition of Order Notation

e Upper bound: T(n) = O(f(n)) Big-O
EXist positive constants ¢ and n’ such that
T(n) <cf(n) foralln>n’

e Lower bound: T(n) = «2(g((n)) Omega
EXist positive constants ¢ and n’ such that
T(n) 2cg(n) foralln >n’

e Tight bound: T(n) = 6(f(n)) Theta
When both hold:
T(n) = O(f(n))
T(n) = Xf(n))

9/30/2007 10

Definition of Order Notation

O(f(n)) : aset or class of functions

g(n) € O(f(n)) Iff there exist positive
consts c¢c and n, such that:

g(n) < c f(n) for all n > n,

Example:
100n2 + 1000 <5 (n® + 2n?) foralln > 19

9/30/2007 SO g(n) < O(f(n)) 11

9/30/2007

Order Notatlon Example

Se+0A

Be+0hA

Te+0h

Be+06

Se+06

de+06

Je+0hA

Ze+0hA

1e+06

0

nt3 o+ oo ——

100n72 + 1000 ——

20

i

g 80 100 120 140 160 180 200

100n? + 1000 <5 (n® + 2n?) foralln> 19

So f(n) € O(Cg(n))

12

Some Notes on Notation

e Sometimes you’ll see

g(n) = 0O(1(n))

e This Is equivalent to
g(n) € O(f(n))
e \What about the reverse?

O(t(n)) = g(n)

9/30/2007

13

Big-O:

— constant:

— logarithmic:
— linear:

— log-linear:
— quadratic:
— cubic:

— polynomial:
— exponential:

9/30/2007

Common Names

0O(1)

O(log n) (log,n, log n? € O(log n))
O(n)

O(n log n)

O(n?)

o(n3)

O(nk) (k is a constant)

O(c") (c is a constant > 1)

14

Meet the Family

e O(f(n)) is the set of all functions
asymptotically less than or equal to f(n)

—o(f(n)) Is the set of all functions
asymptotically strictly less than f(n)

e Q(f(n)) is the set of all functions
asymptotically greater than or equal to f(n)

—o(f(n)) Is the set of all functions
asymptotically strictly greater than f(n)

e O(f(n)) Is the set of all functions
asymptotically equal to f(n)

9/30/2007

15

Meet the Family, Formally

g(n) € O(f(n)) iff
There exist c and n, such that g(n) < c f(n) for all n 2 n,

— g(n) € o(f(n)) iff
There exists a n, such that g(n) < c f(n) for all c and n > n,

Equivalent to: lim__,_ g(n)/f(n) =0

g(n) € Q(f(n)) iff
There exist ¢c and n, such that g(n) = c f(n) for all n = n,

— g(n) € o(f(n)) iff
There exists a n, such that g(n) = c f(n) for all c and n > n,

Equivalent to: lim,_,_ g(n)/f(n) = oo

g(n) e O(f(n)) iff
g(n) € O(f(n)) and g(n) € Q(f(n))

9/30/2007

16

Big-Omega et al. Intuitively

Asymptotic Notation

Mathematics

9/30/2007

Relation
O <
Q >
0 —
o) <
® >

17

9/30/2007

Pros and Cons
of Asymptotic Analysis

18

Perspective: Kinds of Analysis

e Running time may depend on actual
data input, not just length of input

e Distinguish
— Worst Case
e Your worst enemy is choosing input
— Best Case

— Average Case
e Assumes some probabilistic distribution of inputs

— Amortized
e Average time over many operations

9/30/2007 19

Types of Analysis

Two orthogonal axes:

— Bound Flavor
e Upper bound (O, o)
e Lower bound (Q, o)
e Asymptotically tight (0)

— Analysis Case
 Worst Case (Adversary)
e Average Case
 Best Case
e Amortized
9/30/2007

20

16n3logg(10n4) + 100n% = O(n3log n)

e Eliminate 16n3%logg(10n?) + 100nN?
low-order = 16n3logg(10n?)
terms =2 n3logg(10n?)

> n3(logy(10) + logg(n?))
2 n3logg(10) + n3logg(n?)

e Eliminate = n3logg(n?)
constant > 2n3logg(n)
coefficients 2n°logg(n)

=>n3logg(2)log(n)
=2>n3log(n)/3
=2>n3log(n)

9/30/2007 21

e Should be started on Homework 1

e Priority Queues and Heaps up Next
(relevant to Project 2)

9/30/2007

22

