Bring to Class on Wednesday:

- Name
- Email address
- Year (1, 2, 3, 4)
- Major
- Hometown
- Interesting Fact or “What I did on my summer vacation”
Algorithm Analysis: Why?

- Correctness:
 - Does the algorithm do what is intended.

- Performance:
 - What is the running time of the algorithm.
 - How much storage does it consume.

- Different algorithms may be correct
 - Which should I use?
Recursive algorithm for \textit{sum}

- Write a \textit{recursive} function to find the sum of the first \textbf{n} integers stored in array \textbf{v}.

\begin{verbatim}
sum(integer array v, integer n) returns integer
 if n = 0 then
 sum = 0
 else
 sum = nth number + sum of first n-1 numbers
 return sum
\end{verbatim}
Proof by Induction

• **Basis Step:** The algorithm is correct for a base case or two by inspection.

• **Inductive Hypothesis \((n=k)\):** Assume that the algorithm works correctly for the first \(k\) cases.

• **Inductive Step \((n=k+1)\):** Given the hypothesis above, show that the \(k+1\) case will be calculated correctly.
Program Correctness by Induction

• **Basis Step:**
 \[\text{sum}(v,0) = 0. \checkmark \]

• **Inductive Hypothesis (n=k):**
 Assume \(\text{sum}(v,k) \) correctly returns sum of first \(k \) elements of \(v \), i.e. \(v[0]+v[1]+...+v[k-1]+v[k] \)

• **Inductive Step (n=k+1):**
 \(\text{sum}(v,n) \) returns
 \[v[k]+\text{sum}(v,k-1) = (\text{by inductive hyp.}) \]
 \[v[k]+(v[0]+v[1]+...+v[k-1]) = \]
 \[v[0]+v[1]+...+v[k-1]+v[k] \checkmark \]
Algorithms vs Programs

• Proving correctness of an algorithm is very important
 - a well designed algorithm is guaranteed to work correctly and its performance can be estimated

• Proving correctness of a program (an implementation) is fraught with weird bugs
 - Abstract Data Types are a way to bridge the gap between mathematical algorithms and programs
Comparing Two Algorithms

GOAL: Sort a list of names

“I’ll buy a faster CPU”

“I’ll use C++ instead of Java – wicked fast!”

“Ooh look, the –O4 flag!”

“Who cares how I do it, I’ll add more memory!”

“Can’t I just get the data pre-sorted??”
Comparing Two Algorithms

• What we want:
 – Rough Estimate
 – Ignores Details

• Really, *independent* of details
 – Coding tricks, CPU speed, compiler optimizations, ...
 – These would help any algorithms equally
 – Don’t just care about running time – not a good enough measure
Big-O Analysis

• Ignores “details”

• What details?
 – CPU speed
 – Programming language used
 – Amount of memory
 – Compiler
 – Order of input
 – Size of input ... sorta.
Analysis of Algorithms

• Efficiency measure
 – how long the program runs \textit{time complexity}
 – how much memory it uses \textit{space complexity}

• Why analyze at all?
 – Decide what algorithm to implement before actually doing it
 – Given code, get a sense for where bottlenecks must be, without actually measuring it
Asymptotic Analysis

One detail we won’t ignore:
problem size, # of input elements

• Complexity as a function of input size n

 $T(n) = 4n + 5$

 $T(n) = 0.5 \ n \ \log n - 2n + 7$

 $T(n) = 2^n + n^3 + 3n$

• What happens as n grows?
Why Asymptotic Analysis?

• Most algorithms are fast for small n
 – Time difference too small to be noticeable
 – External things dominate (OS, disk I/O, ...)

• BUT n is often large in practice
 – Databases, internet, graphics, ...

• Difference really shows up as n grows!
Exercise - Searching

2 3 5 16 37 50 73 75 126

What algorithm would you choose to implement this code snippet?
Analyzing Code

- Basic Java operations: Constant time
- Consecutive statements: Sum of times
- Conditionals: Larger branch plus test
- Loops: Sum of iterations
- Function calls: Cost of function body
- Recursive functions: Solve recurrence relation
Linear Search Analysis

```c
bool LinearArrayFind(int array[],
                    int n,
                    int key ) {
    for( int i = 0; i < n; i++ ) {
        if( array[i] == key ) {
            // Found it!
            return true;
        }
    }
    return false;
}
```

Best Case: 3
Worst Case: 2n+1
bool BinArrayFind(int array[], int low,
 int high, int key) {

 // The subarray is empty
 if(low > high) return false;

 // Search this subarray recursively
 int mid = (high + low) / 2;
 if(key == array[mid]) {
 return true;
 } else if(key < array[mid]) {
 return BinArrayFind(array, low,
 mid-1, key);
 } else {
 return BinArrayFind(array, mid+1,
 high, key);
 }

Best case:
4

Worst case:
log n?
Solving Recurrence Relations

1. Determine the recurrence relation. What is/are the base case(s)?

2. “Expand” the original relation to find an equivalent general expression *in terms of the number of expansions*.

3. Find a closed-form expression by setting the *number of expansions* to a value which reduces the problem to a base case.
Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst Case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So ... which algorithm is better? What tradeoffs can you make?
Fast Computer vs. Slow Computer

The graph shows the time in ms required for a linear search on a Pentium-IV compared to a 486 processor. The time increases linearly with the number of elements to be searched, indicating the overhead of the slower processor.

- **Linear search on Pentium-IV**: The red line indicates a linear increase in time with the number of elements.
- **Linear search on 486**: The green dashed line shows a much steeper increase in time, demonstrating the performance difference between the two processors.

The x-axis represents the number of elements to be searched, while the y-axis shows the time in ms.
Fast Computer vs. Smart Programmer (round 1)
Fast Computer vs. Smart Programmer (round 2)

- Linear search on Pentium-IV
- Binary search on 486
Asymptotic Analysis

• Asymptotic analysis looks at the order of the running time of the algorithm
 – A valuable tool when the input gets “large”
 – Ignores the effects of different machines or different implementations of the same algorithm

• Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 – Linear search is $T(n) = 3n + 2 \in O(n)$
 – Binary search is $T(n) = 4 \log_2 n + 4 \in O(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime