CSE 326 Selected Practice Problem Solutions

2.6 As discussed in class, the answer to the first part is $2^{2^{N-1}}$ and the answer to the second part is $O(\log \log D)$.
2.10
(a) $O(N)$
(b) $O\left(N^{2}\right)$
(c) The answer depends on how many digits past the decimal point are computed. Each digit costs $O(N)$.

3.22 Pseudocode:

```
Create stack
Read in first token
while (token is not "=")
    if (token is a number)
        push the token onto the stack
    else
        if (token is "+")
            pop a
            pop b
            push a+b
        if (token is "-")
            pop a
            pop b
            push a-b
        if (token is "*")
            pop a
            pop b
            push a*b
        if (token is "/")
            pop a
            pop b
            push a/b
    read next token
```


4.1

(a) A.
(b) G, H, I, L, M, and K.
4.8
(a) $-* * \mathrm{ab}+\mathrm{cde}$.
(b) $\left(\left(a^{*} \mathrm{~b}\right) *(\mathrm{c}+\mathrm{d})\right)-\mathrm{e}$.
(c) $\mathrm{ab} * \mathrm{~cd}+* \mathrm{e}-$.
4.27 See Figures 1-4.

Figure 1: 4.27 After accessing 3
4.28 See Figure 5.

Figure 2: 4.27 After accessing 9

Figure 3: 4.27 After accessing 1

6.2 See Figure 6.

6.3 The result of three deleteMins, starting with both of the heaps in Exercise 6.2, is in Figure 7.
6.30 Clearly the claim is true for $k=1$. Suppose it is true for all values $i=1,2, \ldots, k$. A B_{k+1} tree is formed by attaching a B_{k} tree to the root of a B_{k} tree. Thus by induction, it contains a B_{0} through B_{k-1} tree, as well as the newly attached B_{k} tree, proving the claim.

Figure 4: 4.27 After accessing 5

Figure 5: 4.28

Figure 6: 6.2

Figure 7: 6.3

