Application: Topological Sort

Given a directed graph, $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Valid Topological Sorts:

```cpp
void Graph::topsort()
 Vertex v, w;
 labelEachVertexWithItsIn-degree();
 for (int counter=0; counter < NUM_VERTICES; counter++)
  v = findNewVertexOfDegreeZero();
  v.topologicalNum = counter;
  for each w adjacent to v
    w.indegree--;
}
```

Runtime:

Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 - Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
 - Is there a path between two given vertices?
 - Is the graph (weakly) connected?
 - Which one:
 - Uses a queue?
 - Uses a stack?
 - Always finds the shortest path (for unweighted graphs)?

Graph Connectivity

Undirected graphs are connected if there is a path between any two vertices

Directed graphs are strongly connected if there is a path from any one vertex to any other

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices
The Shortest Path Problem
Given a graph G, edge costs c_{ij}, and vertices s and t in G, find the shortest path from s to t.

For a path $p = v_0 v_1 v_2 \ldots v_k$
- unweighted length of path $p = k$ (a.k.a. length)
- weighted length of path $p = \sum_{i=0}^{k-1} c_{v_i,v_{i+1}}$ (a.k.a. cost)

Path length equals path cost when?

Single Source Shortest Paths (SSSP)
Given a graph G, edge costs c_{ij}, and vertex s, find the shortest paths from s to all vertices in G.

- Is this harder or easier than the previous problem?

All Pairs Shortest Paths (APSP)
Given a graph G and edge costs c_{ij}, find the shortest paths between all pairs of vertices in G.

- Is this harder or easier than SSSP?

- Could we use SSSP as a subroutine to solve this?

Variations of SSSP
- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
- …

Applications
- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- …

SSSP: Unweighted Version

Ideas?
void Graph::unweighted (Vertex s) {
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;
 while (!q.isEmpty()) {
 v = q.dequeue();
 for each w adjacent to v
 if (w.dist == INFINITY) {
 w.dist = v.dist + 1;
 w.path = v;
 q.enqueue(w);
 }
 }
}

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances

Dijkstra, Edsger Wybe

Legendary figure in computer science; was a professor at University of Texas.

Supported teaching introductory computer courses without computers (pencil and paper programming)

Supposedly wouldn’t (until very late in life) read his e-mail; so, his staff had to print out messages and put them in his box.

1972 Turning Award Winner, Programming Languages, semaphores, and …

Weighted SSSP:
The Quest For Food

Can we calculate shortest distance to all nodes from Allen Center?

Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to \(\infty\)

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node \(b\) with the lowest cost
Mark \(b\) as known
For each node \(a\) adjacent to \(b\)
 \(a’\)’s cost = \(\min(a’\)’s old cost, \(b’\)’s cost + cost of \((b, a)\)\)
void Graph::dijkstra(Vertex s) {
 Vertex v, w;
 Initialize s.dist = 0 and set dist of all other vertices to infinity
 while (there exist unknown vertices, find the one b with the smallest distance)
 b.known = true;
 for each a adjacent to b
 if (!a.known)
 if (b.dist + Cost_ba < a.dist)
 decrease(a.dist to= b.dist + Cost_ba);
 a.path = b;
 }
}

Dijkstra's Alg: Implementation

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
 Select the unknown node b with the lowest cost
 Mark b as known
 For each node a adjacent to b
 a's cost = min(a's old cost, b's cost + cost of (b, a))

What data structures should we use?

Running time?

Dijkstra's Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs without negative weights
• A greedy algorithm (irrevocably makes decisions without considering future consequences)
• Intuition for correctness:
 – shortest path from source vertex to itself is 0
 – cost of going to adjacent nodes is at most edge weights
 – cheapest of these must be shortest path to that node
 – update paths for new node and continue picking cheapest path

Correctness: The Cloud Proof

How does Dijkstra's decide which vertex to add to the Known set next?
• If path to V is shortest, path to W must be at least as long (or else we would have picked W as the next vertex)
• So the path through W to V cannot be any shorter!

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:
Initial cloud is just the source with shortest path 0
Assume: Everything inside the cloud has the correct shortest path
Inductive step: Only when we prove the shortest path to some node V (which is not in the cloud) is correct, we add it to the cloud.

When does Dijkstra's algorithm not work?
Dijkstra’s vs BFS

At each step:
1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

Dijkstra’s Algorithm

Breadth-first Search

Some Similarities:

The Trouble with Negative Weight Cycles

What’s the shortest path from A to E?

Problem?