
1

1

Hash Tables (continued) &
Disjoint Sets

Chapter 5 & 8 in Weiss

2

Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
ith probe = (h(k) + i2) mod TableSize

Less likely
to encounter
Primary
Clustering

3

Quadratic Probing

2

3

9

8

7

6

5

4

1

0 Insert:
89
18
49
58
79

4

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5

But…

76

3

2

1

0

6

5

4

40

76

3

2

1

0

6

5

4

48

76

3

2

1

0

6

5

4

40

76

3

2

1

0

6

5

4

40

76

3

2

1

0

6

5

4

4040

48

5

55

48

5 5

55

48

5

Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will
find an empty slot in size/2 probes or fewer.
– show for all 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 and i ≠≠≠≠ j

(h(x) + i2) mod size ≠≠≠≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠≠≠≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size

���� i2 mod size = j2 mod size

���� (i2 - j2) mod size = 0

���� [(i + j)(i - j)] mod size = 0
BUT size does not divide(i-j) or (i+j)

6

Quadratic Probing: Properties
• For any λ < ½, quadratic probing will find an

empty slot; for bigger λ, quadratic probing may
find a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are
not bad

• But what about keys that hash to the samespot?
– Secondary Clustering!

2

7

Double Hashing

f(i) = i * g(k)
where g is a second hash function

• Probe sequence:
0th probe = h(k) mod TableSize

1th probe = (h(k) + g(k)) mod TableSize

2th probe = (h(k) + 2*g(k)) mod TableSize

3th probe = (h(k) + 3*g(k)) mod TableSize

. . .

ith probe = (h(k) + i*g(k)) mod TableSize
8

Double Hashing Example

0

1

2

3

4

5

6 76

76

0

1

2

3

4

5

6

93

76

93

0

1

2

3

4

5

6

93

40

76

40

0

1

2

3

4

5

6

47

93

40

76

47

0

1

2

3

4

5

6

47

93

10

40

76

10

0

1

2

3

4

5

6

47

93

10

55

40

76

55

h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes 1 1 1 2 1 2

9

Resolving Collisions with Double Hashing

2

3

9

8

7

6

5

4

1

0

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

Hash Functions:
H(K) = K mod M
H2(K) = 1 + ((K/M) mod (M-1))
M =

10

Idea: When the table gets too full, create a
bigger table (usually 2x as large) and hash
all the items from the original table into the
new table.

• When to rehash?
– half full (λ = 0.5)

– when an insertion fails

– some other threshold

• Cost of rehashing?

Rehashing

11

Hashing Summary

• Hashing is one of the most important data
structures.

• Hashing has many applications where
operations are limited to find, insert, and
delete.

• Dynamic hash tables have good amortized
complexity. (cost of doubling table and
rehashing is amortized over many inserts)

12

Disjoint Sets

Chapter 8

3

13

Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its
members
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

14

Union

• Union(x,y) – take the union of two sets
named x and y
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, { 9},

15

Find

• Find(x) – return the name of the set
containing x.
– {3,5,7,1,6}, {4,2,8}, { 9},

– Find(1) = 5

– Find(4) = 8

16

Building Mazes

• Build a random maze by erasing edges.

17

Building Mazes (2)

• Pick Start and End

Start

End

18

Building Mazes (3)

• Repeatedly pick random edges to delete.

Start

End

4

19

Desired Properties

• None of the boundary is deleted

• Every cell is reachable from every other
cell.

• Only one path from any one cell to another
(There are no cycles – no cell can reach
itself by a path unless it retraces some part
of the path.)

20

A Cycle

Start

End

21

A Good Solution

Start

End

22

A Hidden Tree

Start

End

23

Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.

24

Basic Algorithm
• S = set of sets of connected cells
• E = set of edges
• Maze= set of maze edges (initially empty)

While there is more than one set in S {
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u ≠ v then // removing edge (x,y) connects previously non-

// connected cells x and y - leave this edge removed!
Union(u,v)

else // cells x and y were already connected, add this
// edge to set of edges that will make up final maze.

add (x,y) to Maze
}
All remaining members of E together with Mazeform the maze

5

25

Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32

33,34,35,36}

Pick (8,14)

26

Example
S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Union(7,20)

27

Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Pick (19,20)

28

Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

E
Maze

