Hash Tables (continued) &
Disjoint Sets

Chapter 5 & 8 in Weiss

Quadratic Probing|Less iiely

to encounter
. . Primary
—j2

f(i) =1 Clustering

* Probe sequence:
0t probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3 probe = (h(k) + 9) mod TableSize

ith probe = (h(k) +3) mod TableSize

Quadratic Probing

© o ~NoO Uk WNEFE O

Quadratic Probing Examplg, ,

insert(76) insert@0) insert@d8) insertf) insert65) insert@é7)
76%7=6 A40%7=5 48%7=6 5%7=5 55%7=6 47%7=5

Quadratic Probing:
Success guarantee ok Y2

« If size is prime and < %, then quadratic probing will
find an empty slot in size/2 probes or fewer.
—showforallo <i,j s size/2andi #j
(h(x) +i2) nod size # (h(x) + j? nod size
— by contradiction: suppose that for sonzg:i
(h(x) +i2) nmod size = (h(x) + j?) nod size

= i2 nod size = |2 nod size
= (i2-j? nod size = 0
= [(i +j)(i - j)] nod size =0

BUT size does not dividgi -j) or (i+)

Quadratic Probing: Properties

» Forany A < ¥, quadratic probing will find an
empty slot; for biggek, quadratic probingnay
find a slot

Quadratic probing does not suffer fr@mmary
clustering: keys hashing to the saanea are
not bad

« But what about keys that hash to the sapot?
— Secondary Clustering!

Double Hashing

f(i) =1*g(k)
where g is a second hash function

» Probe sequence:
0" probe = h(k) mod TableSize
1th probe = (h(k) + g(k)) mod TableSize
2t probe = (h(k) + 2*g(k)) mod TableSize
3t probe = (h(k) + 3*g(k)) mod TableSize

ith probe = (hK) + i*g(k)) mod TableSize

Double Hashing Example

h(k) = k mod 7 and g(k) = 5 — (k mod 5)

76 93 40 47 10 55

Resolving Collisions with Double Hashing
Hash Functions
H(K) = Kmod M
H,(K) = 1 + ((K/M) mod (M-1))
M=

o

Insert these valuesinto the hash table
in thisorder. Resolveany collisions
with double hashing:

13
28
33
147
43

© 00N U WN R

Rehashing

Idea: When the table gets too full, create a
bigger table (usually 2x as large) and hash
all the items from the original table into the
new table.

* When to rehash?

— half full (\ = 0.5)
— when an insertion fails
— some other threshold

 Cost of rehashing?

10

Hashing Summary

» Hashing is one of the most important data
structures.

» Hashing has many applications where
operations are limited to find, insert, and
delete.

» Dynamic hash tables have good amortized
complexity. (cost of doubling table and
rehashing is amortized over many inserts)

11

Disjoint Sets

Chapter 8

12

Disjoint Union - Find

» Maintain a set of pairwise disjoint sets.
—{3,5,7},{4,2,8}, {9}, {1,6}

» Each set has a unique name, one of its
members

-{3,57}, {428}, {9} {16}

13

Union

» Union(x,y) — take the union of two sets
named x and y

-{357},{4.28} {9} {16}
— Union(5,1)
{3,57,1,6}, {4,28}, { 9},

14

Find

» Find(x) — return the name of the set
containing x.
—-{3.57,1,6}, {4,28}, { 9},
—Find(1)=5
—Find(4)=8

15

Building Mazes

« Build a random maze by erasing edges.

16

Building Mazes (2)

¢ Pick Start and End

Start

End

17

Building Mazes (3)

» Repeatedly pick random edges to delete.

Start ‘

End

18

Desired Properties

* None of the boundary is deleted

» Every cell is reachable from every other
cell.

* Only one path from any one cell to another
(There are no cycles — no cell can reach
itself by a path unless it retraces some part
of the path.)

19

A Cycle

Start ‘

End

20

A Good Solution

Start

5

End

21

A Hidden Tree

Start

22

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.

We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Stat 1 | 2 | 3| 4|56

7 8 9 (10| 11|12

13 |14 | 15| 16 | 17 | 18

19 |20 | 21 | 22 | 23| 24

25 |26 | 27 | 28 | 29 | 30

31|32|33|34 |3 |3 End

23

Basic Algorithm

» S=set of sets of connected cells
« E=setof edges
* Maze= set of maze edges (initially empty)

While there is more than one setin S {
pick a random edge (x,y) and remove from E
u := Find(x);
v = Find(y);
ifu #vthen //removing edge (x,y) connects previously non-
/I connected cells x and y - leave this edge removed!
Union(u,v)
else /I cells x and y were already connected, add this
/I edge to set of edges that will make up final maze.
add (x,y) to Maze
24
All remaining members of E together with Mazeform the maze

Example Step

Pick (8,14) s
{1,2,7,8,9,13,19}
3}
Stat 1 2 ‘ slalsls o
EB 5
7 8 9 (101112 &
|18 | {10}
13 (14 |15 16 | 17 | 18 1117
19 |20 |21 |22 23|24 {12}
[o | {14,20,26,27}

25|26 27 (28|29 30 {15,16,21}

31|32 33 34 35 36 End

{22,23,24,29,30,32
33,34,35,36) 25

]

1,2,7,8,9,13,19}

EEEER

{11,17}

{12}
{14,20,26,27}
{15,16,21}

{22,23,24,29,39,32
33,34,35,36}

Example

S

{1,2,7,8,9,13,19,14,20 26,27}

Find(8) = 7
Find(14) = 20 {ég
— B
Union(7,20) {6}

{10}

{11,17}

{12}

{15,.16,21}

{22,23,24,29,39,32
33,34,35,36}

26

Example
Pick (19,20) s
{1,2,7,8,9,13,19
14,20,26,27}
Stat 1 2 ‘ slalsls .
ER @
7 8 9 |10 |11 |12 &
13|14 |15 16|17 | 18 {%}(_0}
19| 20|21 |22 23|24 (11,17}
{12}
25|26 27|28 |29 30 {15,16,21}
3132 33 34 35 36 End |

{22,23,24,29,39,32
33,34,35,36) 27

Example at the End

Start 1 2|3\26

7 8 9
13 | 14 | 15
19|20 |21

10 11 (12

16 17 | 18

22 23|24

s
{1,2,3,45,6,7,... 36}

— E
—— Maze

28

