
1

1

The Splay Tree Idea

17

10

92

5

If you’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

3

2

1. Findor inserta node k
2. Splay k to the root using:

zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, k
o Great if k is accessed again

2. And helps many others!
o Great if many others on the path are accessed

Find/Insert in Splay Trees

3

Splay: Zig-Zag*

g

X
p

Y

k

Z

W

*Just like an…

k

Y

g

W

p

ZX

Which nodes improve depth?

4

Splay: Zig-Zig*

k

Z

Y

p

X

g

W

g

W

X

p

Y

k

Z

*Is this just two AVL single rotations in a row?

5

Special Case for Root: Zig

p

X

k

Y

Z

root k

Z

p

Y

X

root

Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

6

Splaying Example: Find(6)

2

1

3

4

5

6

Find(6)

2

1

3

6

5

4

?

2

7

Still Splaying 6

2

1

3

6

5

4

1

6

3

2 5

4

?

8

Finally…

1

6

3

2 5

4

6

1

3

2 5

4

?

9

Another Splay: Find(4)

Find(4)

6

1

3

2 5

4

6

1

4

3 5

2

?

10

Example Splayed Out

6

1

4

3 5

2

61

4

3 5

2

?

11

Original Tree Tree after two finds

61

4

3 5

2

2

1

3

4

5

6
12

But Wait…

What happened here?

Didn’t two find operations take linear time
instead of logarithmic?

What about the amortized O(logn) guarantee?

3

13

Why Splaying Helps

• If a node n on the access path is at depth d before
the splay, it’s at about depth d/2 after the splay

• Overall, nodes which are low on the access path
tend to move closer to the root

• Splaying gets amortized O(log n) performance.
(Maybe not now, but soon, and for the rest of the operations.)

14

Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
– Less storage per node, easier to code

• Often data that is accessed once,
is soon accessed again!
– Splaying does implicit cachingby bringing it to the root

15

Splay Operations: Find

• Find the node in normal BST manner

• Splay the node to the root
– if node notfound, splay what would have been its parent

What if we didn’t splay?

16

Splay Operations: Insert

• Insert the node in normal BST manner

• Splay the node to the root

What if we didn’t splay?

17

Splay Operations: Remove

find(k)

L R

k

L R

> k< k

delete k

Now what?

18

Join
Join(L, R):

given two trees such that (stuff in L) < (stuff in R), merge them:

Splay on the maximum element in L, then attach R

L R R

Lsplay

max

4

19

Delete Example

91

6

4 7

2

Delete(4)

find(4)

9

6

7

1

4

2

1

2

9

6

7

Find max

2

1

9

6

7

2

1

9

6

7 20

Splay Tree Summary

• All operations are in amortized O(logn) time

• Splaying can be done top-down; this may be better because:
– only one pass

– no recursion or parent pointers necessary

– we didn’t cover top-down in class

• Splay trees are veryeffective search trees
– Relatively simple

– No extra fields required

– Excellent locality properties: frequently accessed keys are cheap to
find

The Memory Hierarchy &
Locality

22

Why do we need to know about the
memory hierarchy/locality?

• One of the assumptions that Big-Oh makes is that
all operations take the same amount of time.

• Is that really true?

23

Definitions

Cycle – (for our purposes) the time it takes to execute
a single simple instruction. (ex. Add 2 registers
together)

Memory Latency – time it takes to access memory

24

CPU

(has registers)

Cache

Main Memory

Disk

TIme to access:

2-10 ns

40-100 ns

a few
milliseconds

(5-10 Million ns)

SRAM

8KB - 4MB

DRAM

up to 10GB

many GB

Cache

Main Memory

Disk

1 ns per instruction

5

25

Moore’s Law

26

Processor-Memory Performance Gap

• x86 CPU speed (100x over 10 years)

10

100

1000

1

89 91 93 95 97 99 01

“Memory gap”

“Memory wall”

x x

x
x x

x

o

o

o

o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

27

What can be done?

• Goal: Attempt to reduce the number of accesses to
the slower levels.

• How?

28

Locality

Temporal Locality (locality in time) – If an item is
referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an item is
referenced, items whose addresses are close by will
tend to be referenced soon.

29

Caches
• Each level is a sub-set of the level below.

Cache Hit – address requested is in cache

Cache Miss – address requested is NOT in
cache

Cache line size (chunk size) – the number
of contiguous bytes that are moved into
the cache at one time

30

Examples

x = a + 6;

y = a + 5;

z = 8 * a;

x = a[0] + 6;

y = a[1] + 5;

z = 8 * a[2];

