The Splay Tree Idea

If you're forced to make

a really deep access:
I

Since you're down there anyway,
fix up a lot of deep nodes!

Splay: Zig-Zag
.

Which nodes improve depth?

3

“Just like an...

Special Case for Root: Zig

root Q root
—)

N ®
/N /2\

Relative depth op, Y, Z? Relative depth of everyone else?]

Why not drop zig-zig and just zig all the way?

Find/Insert in Splay Trees

1. Findor inserta nodek
2. Splay k to theroot using:
zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new rook
o Greatif k is accessed again

2. And helps many others!
o Great if many others on the path are accessed2

Splay: Zig-Zig
(@
—

RNPAAN

W X

AG

Y z

*|s this just two AVL single rotations in a row?

Splaying Example: Fin@)

g

?
—) @
Find(6) .
@ ®
® ®
® @

Still Splaying6

=
®,

Q

@ 7

Another Splay: Find{)

Find() \

Original Tree Tree after two fing

N
® 6 o
— Cf ®

%
®\

©

11

s

Finally...

Example Splayed Out

@
-

'S

10

But Wait...

What happened here?

Didn’t two find operations take linear time
instead of logarithmic?

What about the amortized O(loy guarantee?

12

Why Splaying Helps

« If a noden on the access path is at degthefore
the splay, it's at about deptt2 after the splay

» Overall, nodes which are low on the access path
tend to move closer to the root

» Splaying gets amortized O(log n) performance.
(Maybe not now, but soon, and for the rest of therations.)

13

Practical Benefit of Splaying

* No heights to maintain, no imbalance to check for
— Less storage per node, easier to code

« Often data that is accessed once,
is soon accessed again!

— Splaying does implicitachingby bringing it to the root

14

Splay Operations: Find

¢ Find the node in normal BST manner
« Splay the node to the root
— if node nofound, splay what would have been its parent

What if we didn't splay?

15

Splay Operations: Insert

¢ Insert the node in normal BST manner
¢ Splay the node to the root

What if we didn't splay?

16

Splay Operations: Remove

find(k) delet

>k

Now what?

17

Join
Join(L, R):
given two trees such that (stuff in L) < (stufff), merge them:

LEE

Splay on the maximum element in L, then attach R

18

Delete Example

Deleted)

Splay Tree Summary

O
e All operations are in amortized O(log time
@

@ ®
© f"‘—d(“i 1 @ —»% ’ ® « Splaying can be done top-down; this may be bégenuse|
DO ©, @)
6 |

— only one pass
— no recursion or parent pointers necessary
— we didn’t cover top-down in class

© Splay trees areeryeffective search trees
@O @ C@\ — Relatively simple

— No extra fields required
/@ — Excellentlocality properties frequently accessed keys are cheap to

@ @19 find

Find max

@)

20

Why do we need to know about the
memory hierarchy/locality?
. « One of the assumptions that Big-Oh makes is that
The Memory Hlerarchy & all operations take the same amount of time.
Locality « |s that really true?
DeflnlthnS oPU Time to access:

(has registers) 1 ns per instruction

Cycle— (for our purposes) the time it takes to execute
a single simple instruction. (ex. Add 2 registers -
together)

Cache Cache
. . 8KB - 4MB 210 ns
M emory Latency —time it takes to access memory

Main Memory

DRAM

Main Memory
up to 10GB

40-100 ns

afew
Disk Disk
miltseconds

(5-10 Million ns)
24

23

Moore’s Law

transistors

Pentium 4 Processor,| 100,000,000

MOORE'S LAW Pentium® Il Processor

Pentiume i Processor

10,000,000
Pentium® Processor,

1,000,000

|
-+ 4 100,000

ﬂ‘n‘

=

. A

PETON

1 10,000

8008 s i e

" 1000
1970 1975 1980 1985 1990 1995 2000

25

Processor-Memory Performance G

« x86 CPU speed (100x over 10 years)

Pentium IV

Pentium 1l /

Pentium Pro
Pentium
100

3862 “Memory gap"l l
X

1000|

‘ “Memory wall”

89 91 93 95 97 99 01

26

What can be done?

* Goal: Attempt to reduce the number of accesses to
the slower levels.

e How?

27

Locality

Temporal Locality (locality in time) — If an item is
referenced, it will tend to be referenced agaimsoo

Spatial Locality (locality in space) — If an item is
referenced, items whose addresses are close by will
tend to be referenced soon.

28

Caches
» Each level is aub-set of the level below.

Cache Hit — address requested is in cache

Cache Miss— address requested is NOT in
cache

Cachelinesize (chunk size) — the number
of contiguous bytes that are moved into
the cache at one time

29

Examples
X = a + 6; x = a[0] + 6;
y = a + 5 y = a[l] + 5
z =8 * a; z =8* a[2];

30

