Trees
(Today: Splay Trees)

Chapter 4 in Weiss

AVL Trees Revisited

- Balance condition:
 - For every node \(x \), \(-1 \leq \text{balance}(x) \leq 1\)
 - Strong enough: Worst case depth is \(O(\log n) \)
 - Easy to maintain: one single or double rotation

- Guaranteed \(O(\log n) \) running time for:
 - Find ?
 - Insert ?
 - Delete ?
 - buildTree ?

AVL Trees Revisited

- What extra info did we maintain in each node?
- Where were rotations performed?
- How did we locate this node?

Other Possibilities?

- Could use different balance conditions, different ways to maintain balance, different guarantees on running time, …
- Why aren’t AVL trees perfect?
- Many other balanced BST data structures
 - Red-Black trees
 - AA trees
 - Splay Trees
 - 2-3 Trees
 - B-Trees
 - …

Splay Trees

- Blind adjusting version of AVL trees
 - Why worry about balances? Just rotate anyway!
- Amortized time per operations is \(O(\log n) \)
- Worst case time per operation is \(O(n) \)
 - But guaranteed to happen rarely

Insert/Find always rotate node to the root!

SAT/GRE Analogy question:
AVL is to Splay trees as ___________ is to ___________

Recall: Amortized Complexity

If a sequence of \(M \) operations takes \(O(M f(n)) \) time, we say the amortized runtime is \(O(f(n)) \).

- Worst case time per operation can still be large, say \(O(n) \)
- Worst case time for any sequence of \(M \) operations is \(O(M f(n)) \)

Average time per operation for any sequence is \(O(f(n)) \)

Amortized complexity is worst-case guarantee over sequences of operations.
Recall: Amortized Complexity

- Is amortized guarantee any weaker than worst-case?
- Is amortized guarantee any stronger than average-case?
- Is average case guarantee good enough in practice?
- Is amortized guarantee good enough in practice?

The Splay Tree Idea

If you’re forced to make a really deep access:

Since you’re down there anyway, fix up a lot of deep nodes!

Find/Insert in Splay Trees

1. Find or insert a node \(k \)
2. Splay \(k \) to the root using:
 - zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, \(k \)
 - Great if \(k \) is accessed again
2. And helps many others!
 - Great if many others on the path are accessed

Splaying node \(k \) to the root:

Need to be careful!

One bad idea is to repeatedly use AVL single rotation until \(k \) becomes the root:

Splay: Zig-Zag*

*Just like an… Which nodes improve depth?

Splay: Zig-Zig*

*Is this just two AVL single rotations in a row?
Special Case for Root: Zig

Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

Splaying Example: Find(6)

Still Splaying 6

Finally…

Another Splay: Find(4)

Example Splayed Out
But Wait…

What happened here?

Didn’t two find operations take linear time instead of logarithmic?

What about the amortized $O(\log n)$ guarantee?

Why Splaying Helps

• If a node n on the access path is at depth d before the splay, it’s at about depth $d/2$ after the splay

• Overall, nodes which are low on the access path tend to move closer to the root

• Splaying gets amortized $O(\log n)$ performance.
 (Maybe not now, but soon, and for the rest of the operations.)

Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
 – Less storage per node, easier to code

• Often data that is accessed once, is soon accessed again!
 – Splaying does implicit caching by bringing it to the root

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root
 – if node not found, splay what would have been its parent

What if we didn’t splay?

Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

What if we didn’t splay?

Splay Operations: Remove

Now what?
Join

Join(L, R):
given two trees such that (stuff in L) < (stuff in R), merge them:

Splay on the maximum element in L, then attach R

Does this work to join any two trees?

Splay Tree Summary

- All operations are in amortized $O(\log n)$ time
- Splaying can be done top-down; this may be better because:
 - only one pass
 - no recursion or parent pointers necessary
 - \textit{we didn’t cover top-down in class}
- Splay trees are \textit{very} effective search trees
 - Relatively simple
 - No extra fields required
 - \textit{Excellent locality properties}: frequently accessed keys are cheap to find

Delete Example

Delete(4)

find(4)

Find max