Trees
(Today:Splay Trees)

Chapter 4 in Weiss

AVL Trees Revisited

» Balance condition
For every node, -1<balance)<1
— Strong enough : Worst case depth is Oflpg
— Easy to maintainonesingle or double rotation

¢ Guaranteed O(log) running timefor
— Find ?
— Insert ?
— Delete ?
— buildTree ?

AVL Trees Revisited

¢ Whatextra infodid we maintain in each node?

* Wherewere rotations performed?

» How did welocatethis node?

Other Possibilities?

« Could use different balance conditions, diffeneals to
maintain balance, different guarantees on running.t...

* Why aren’t AVL trees perfect?

« Many other balanced BST data structures
— Red-Black trees
— AAtrees
— Splay Trees
— 2-3Trees
— B-Trees

Splay Trees

« Blind adjusting version of AVL trees

— Why worry about balances? Just rotate anyway!
* Amortizedtime per operations is O(log)
» Worst case time per operation isnd(

— But guaranteed to happen rarely

Insert/Find always rotate node to the root!

SAT/GRE Analogy question:
AVL is to Splay trees as is to

Recall: Amortized Complexity

If a sequence of M operationstakes O(M f(n)) time,
we say the amortized runtimeis O(f(n)).

« Worst case timper operationcan still be large, say @)
« Worst case time faany sequencef M operations is O(M f{))

Average timeper operatiorfor anysequence is O(fi))

Amortized complexity is worst-caseguarantee over
sequencesf operations.




Recall: Amortized Complexity

 |s amortized guarantee any weaker than worstcase?
* Is amortized guarantee any stronger than averagecd
« |s average case guarantee good enough in practice?

¢ |s amortized guarantee good enough in practice?

The Splay Tree Idea

If you're forced to make
a really deep access:

Since you’re down there anyw.
fix up a lot of deep nodes!

Find/Insert in Splay Trees

Findor inserta nodek
Splay k to theroot using:
zig-zag, zig-zig, or plain old zig rotation

1.
2.

Why could this be good??

1. Helps the new rook,
o Greatif kis accessed again

2. And helps many others!
o Great if many others on the path are accessedg

Splaying nodé to the root:
Need to be careful!

One bad idea is to repeatedly use AVL single rotati
until k becomes the root:

Splay: Zig-Zag

V-9
© w X Y z W

ANV

*Just like an...

Which nodes improve depth?

11

@ (©

Y 4 w X

*|s this just two AVL single rotations in a row?




Special Case for Root: Zig

root Q root
—)
© /A

AN /N /2N

Relative depth op, Y, Z? Relative depth of everyone else?]

Why not drop zig-zig and just zig all the way?

Splaying Example: Fin@)

L

—
Find(s) @\

® ®

Still Splaying6

=
@,

Q

@ 15

® ®
Finally...
?
® — ®
o 6 ®
© @

Another Splay: Find})

® ®
?
—_—
Find() /@ \ ©
@ G ® 6

6 6

Q,
Q,

17

Example Splayed Out

18




But Wait...

What happened here?

Didn’t twofind operations take linear time
instead of logarithmic?

What about the amortized O(log guarantee?

19

Why Splaying Helps

¢ If a noden on the access path is at degthefore
the splay, it's at about deptii2 after the splay

« Overall, nodes which are low on the access path
tend to move closer to the root

« Splaying gets amortized O(log n) performance.
(Maybe not now, but soon, and for the rest of therations.)

20

Practical Benefit of Splaying

¢ No heights to maintain, no imbalance to check for
— Less storage per node, easier to code

« Often data that is accessed once,
is soon accessed again!
— Splaying does implicitachingby bringing it to the root

21

Splay Operations: Find

¢ Find the node in normal BST manner
¢ Splay the node to the root
— if node nofound, splay what would have been its parent

What if we didn’t splay?

22

Splay Operations: Insert
* Insert the node in normal BST manner

» Splay the node to the root

What if we didn't splay?

23

Splay Operations: Remove

®
find(k) deletek
A= AA=AA

Now what?

24




Join
Join(L, R):

AAZAA™ AN

Splay on the maximum element in L, then attach R

Does this work to joimnytwo trees?

25

given two trees such that (stuff in L) < (stuffR), merge them:

Delete@)

©®

@ fw@%

oJo
®

Delete Example
®

@_.% G}@

©

Find max

f@
Jo

@26

Splay Tree Summary

« All operations are in amortized O(log time

* Splaying can be done top-down; this may be beternuse|
— only one pass

— no recursion or parent pointers necessary
— we didn’t cover top-down in class

« Splay trees areeryeffective search trees
— Relatively simple
— No extra fields required

find

27

— Excellentiocality properties frequently accessed keys are cheap to




