Trees
(Today: AVL Trees)

Chapter 4 in Weiss

Balanced BST

Observation
e BST: the shallower the better!
e For a BST withh nodes

— Average height is O(log)

— Worst case height is @)

e Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution Require éBalance Condition that
1. ensures depth @&logn) — strong enough!
2. is easy to maintain - not too strong!

Potential Balance Conditions

1. Left and right subtrees of theot
have equal number of nodes

2. Left and right subtrees of theot
have equaheight

3. Left and right subtrees efiery node
have equal number of nodes

4. Left and right subtrees efiery node
have equaheight

The AVL Balance Condition

Adelson-Velskii and Landis (AVL)
AVL balance property:

Left and right subtrees @kery node
haveheights differing by at most 1

e Ensures small depth

— Will prove this by showing that an AVL tree of gbt
h must have a lot of (i.e. O nodes

e Easy to maintain
— Using single and double rotations

The AVL Tree Data Structure

Structural properties
1. Binary tree property
(0,1, or 2 children)
2. Heights of left and right
subtrees oévery node
differ by at most 1
Result:
Worst case depth of any
node is: O(log)

Ordering property
— Same as for BST

Is this an AVL Tree?

NULLs have
height- 1




Deciding AVLness

Proving Shallowness Bound

‘Let S(h) be the min # of nodes in an AV tree of heighth=4

|AVL tree of heighth with the min # of nodes (1p
Claim: S(h) = S(h-1) +S(h-2) +1

: Solution of recurrences(h) = O(2") |
(like Fibonacci numbers) |

An AVL Tree
3 10 |data
3 height
‘ children
2
VAR
1 0
3

AVL trees: find, insert

e AVL find:
— same as BST find.
e AVL insert:

— same as BST insegxcept may need to “fix”
the AVL tree after inserting new value.

10

AVL tree insert

Let x be the node where an imbalance occurs.

Four cases to consider. The insertion is in the
1. leftsubtree of théeft child of x.
2. rightsubtree of théeft child of x.
3. leftsubtree of theight child of x.
4. rightsubtree of theight child of x.

Idea: Cases 1 & 4 are solved byiagle rotation
Cases 2 & 3 are solved bylauble rotation

11

Bad Case #1

Insert@)
Insert@)
Insert(l)

12

-




Fix: Apply Single Rotation

AVL Property violated at this node (x)

Single Rotation:

1. Rotate between x and child 1

Single rotation example

15

Single rotation in general

14

2 2
Bad Case #2
Insert(l)
Insert@)
Insert@)

16

Fix: Apply Double Rotation

AVL Property violated at this node (x)
,/

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child 17

Double rotation in general

hz0




Double rotation, step 1
@

19

Double rotation, step 2

20

Imbalance at node X

Single Rotation
1. Rotate between x and child

Double Rotation

1. Rotate between x's child and grandchild
2. Rotate between x and x’s new child

21

Insert into an AVL treeabecd

22

Single and Double Rotations:

Inserting what integer values
would cause the tree to need a:

1. single rotation? Q

2. double rotation? 0 9

3. no rotation?

23

Insertion into AVL tree

Find spot for new key

Hang new node there with this key
Search back up the path for imbalance
If there is an imbalance:

\X case #1: Perform single rotation and exit

HpwDdPR

} case #2: Perform double rotation and exit

Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!

24




Easy Insert

Insert@) /@D\
1 22

Unbalanced?

25

Hard Insert (Bad Case #1)

Insert@3)
2 2
®
1 0 0 1
@ © @
0 0 0
® @
Unbalanced?
How to fix?

26

Single Rotation

3 3

e = b
5

1
@
0 0@

O

27

Hard Insert (Bad Case #2)

Insert(L8)

Unbalanced? @ @ @

How to fix?

28

Single Rotation (oops!)

Double Rotation (Step #1)

29




Double Rotation (Step #2)

/f@vs\ -»< %

Y
4 o

® &




