Trees
(Binary Search Trees)
Chapter 4 in Weiss

Tree Calculations

Recall: height is max number of edges from root to a leaf

Find the height of the tree...

runtime:

Tree Calculations Example

How high is this tree?

More Recursive Tree Calculations:
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree
• In-order: Left subtree, root, right subtree
• Post-order: Left subtree, right subtree, root

Traversals

void traverse(BNode t){
 if (t != NULL)
 traverse (t.left);
 print t.element;
 traverse (t.right);
 }
}

Binary Trees

• Binary tree is
 – a root
 – left subtree (maybe empty)
 – right subtree (maybe empty)

• Representation:

Data
left
right

[Diagram of a binary tree]
Binary Tree: Representation

A
B
C
D
E
F

Binary Tree: Special Cases

A
B
C
D
E
F

Binary Tree: Some Numbers!

For binary tree of height h:
- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

Binary Tree: Some Numbers!

For binary tree of height h:
- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

ADTs Seen So Far

• Stack
 – Push
 – Pop
• Queue
 – Enqueue
 – Dequeue
• Priority Queue
 – Insert
 – DeleteMin
 Remember decreaseKey?

The Dictionary ADT

• Data:
 – a set of (key, value) pairs
• Operations:
 – Insert (key, value)
 – Find (key)
 – Remove (key)

A Modest Few Uses

• Sets
• Dictionaries
• Networks : Router tables
• Operating systems : Page tables
• Compilers : Symbol tables

Probably the most widely used ADT!
Implementations

- Unsorted Linked-list
- Unsorted array
- Sorted array

Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children
 - result:
 - storage is small
 - operations are simple
 - average depth is small
- Order property
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
 - result: easy to find any given key
- What must I know about what I store?

Example and Counter-Example

Binary Search Tree

NOT A BINARY SEARCH TREE

Find in BST, Recursive

```java
Node Find(Object key, Node root) {
    if (root == NULL)
        return NULL;
    if (key < root.key)
        return Find(key, root.left);
    else if (key > root.key)
        return Find(key, root.right);
    else
        return root;
}
```

Insert in BST

```java
Insert(13)
Insert(8)
Insert(31)
```

Insertions happen only at the leaves – easy!
BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

 Runtime depends on the order!

 – in given order

 – in reverse order

 – median first, then left median, right median, etc.

Bonus: FindMin/FindMax

• Find minimum

• Find maximum

Deletion in BST

Why might deletion be harder than insertion?

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be modified (e.g., min and max)

Non-lazy Deletion

• Removing an item disrupts the tree structure.
• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.
• Three cases:
 – node has no children (leaf node)
 – node has one child
 – node has two children

Non-lazy Deletion – The Leaf Case

Delete(17)
Deletion – The One Child Case

Delete(15)

Deletion – The Two Child Case

Delete(5)

What can we replace 5 with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:
• \(\text{succ} \) from right subtree: \(\text{findMin}(t, \text{right}) \)
• \(\text{pred} \) from left subtree: \(\text{findMax}(t, \text{left}) \)

Now delete the original node containing \(\text{succ} \) or \(\text{pred} \)
• Leaf or one child case – easy!

Finally…

7 replaces 5

Original node containing 7 gets deleted