Trees
(Binary Search Trees)

Chapter 4 in Weiss

Tree Calculations

Recall height is max number
of edges from root to a leaf

Find the height of the tree...

runtime

Tree Calculations Example

How high is this tree? 6
® ©
©eE ©

$°° ¢

3

More Recursive Tree Calculations:
Tree Traversals

A traversalis an order for
visiting all the nodes of a tree ()

Three types: O ©
« Pre-order Root, left subtree, right subtree e

¢ In-order Left subtree, root, right subtree)
(an expression treg

« Post-order Left subtree, right subtree, root

Traversals

voi d traverse(BNode t){
if (t !'= NULL)
traverse (t.left);
print t.elenent;
traverse (t.right);

Binary Trees

e Binary tree is

— aroot
— left subtredmaybe empty)
— right subtredmaybe empty)
* Representation:
Data
left | right e m
pointer| pointer

OO,

Binary Tree: Representation

A
m',?n'ie“i,?n“t‘e.\ 0
B C (B ©

left |right left |right
pointepointe pointepointe} @ @}FK

D E F

left ‘righ! left ‘righ! left ‘righ!
ointepoints ointepointe ointepoints

lll#/\

Binary Tree: Special Cases

(®) (») /®\

Iy

OGO OO ©®6
® O

Complete Tree Perfect Tree

Binary Tree: Some Numbers!

For binary tree of heiglt:
— max # of leaves:

— max # of nodes:
— min # of leaves:

— min # of nodes:

Full Tree
8
ADTs Seen So Far
e Stack Priority Queue
— Push — Insert
— Pop — DeleteMin
* Queue Remember decreaseKey?
— Enqueue
— Dequeue

10

The Dictionary ADT

* snyder

e Data: Larry Snyder
OH: W 4:30-5:30
— aset of insertgnyder,) ot moa
(key, value) pairs ——
« ppham
1 Paul Pham
« Operations: OH: Th 2:30-3:30
— Insert (key, value) _find(ppham CSE 002
— Find (key) « ppham . Brianngo
Paul Pham, ...
— Remove (kEy) auirham Brian Ngo
OH: Tu2:30
CSE 002

The Dictionary ADT is sometimes

called the ‘Map ADT" 1

A Modest Few Uses

* Sets

« Dictionaries

» Networks . Router tables
» Operating systems : Page tables
» Compilers : Symbol tables

Probably the most widely used ADT!

12

Implementations

insert find delete

« Unsorted Linked-list
« Unsorted array

« Sorted array

13

Binary Search Tree Data Structurs

¢ Structural property
— each node has2 children

— result: @

« storage is small
« operations are simple

« average depth is small 6 @

« Order property
— all keys in left subtree smaller 9 @ ‘I. ‘I‘

than root's key

— all keys in right subtree larger
than root's key @ 0 @ @‘
— result: easy to find any given key

14

« What must | know about what | store?

U

Example and Counter-Example
e |
@ ®
@ © O 06
® ® %D
@

BINARY SEARCH TREE NOT A
BINARY SEARCH TREE 15

Find in BST, Recursive

Node Fi nd(Obj ect key,
Node root) {
if (root == NULL)
6 return NULL;

if (key < root.key)
e @ return Find(key,
root.left);

else if (key > root.key)

e @ return Find(key,
root.right);

el se

return root;
Runtime: }

16

Find in BST, lterative

Node Fi nd(Obj ect key,
Node root) {

while (root !'= NULL &&
root. key != key) {
if (key < root.key)
root = root.left;
el se
root = root.right;

}

return root;

}

Runtime:

17

Insert in BST

Insert(13)

Insert(8)
6 Insert(31)

Insertions happen only
at the leaves — easy!

Runtime:

18

BuildTree for BST
* Suppose keys 1, 2, 3,4,5,6,7,8,9 are indénte
an initially empty BST.
Runtime depends on the order!
— in given order

— in reverse order

— median first, then left median, right median, etc.

19

Bonus: FindMin/FindMax

¢ Find maximum

6 60

¢ Find minimum

Deletion in BST

A

©,
@ ©
@ @)

Why might deletion be harder than insertion?

21

Lazy Deletion

Instead of physically deleting
nodes, just mark them as
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

— extra memory for deleted flag /
— many lazy deletions slow finds @

— some operations may have to be
modified (e.g., min and max)

Non-lazy Deletion

* Removing an item disrupts the tree structure.
« Basic ideafind the node that is to be removed.
Then “fix” the tree so that it is still a binary seh
tree.
» Three cases:
— node has no children (leaf node)
— node has one child
— node has two children

23

Non-lazy Deletion — The Leaf Case

Delete(L7)

24

Deletion — The One Child Case Deletion — The Two Child Case
@
Delete(5) Deletef) N
o RN
@ ©

@ © Q
\ @
o

What can we replacewith?

Deletion — The Two Child Case Finally...
Idea: Replace the deleted node with a value

guaranteed to be between the two child subtrees! (@)
Options: 7 replaces 5}(}D\
< succfrom right subtree: findMin(tight)
« predfrom left subtree : findMax(eft) @ O €
Now delete the original node containisgccor pred Original node containing

- Leaf or one child case — easy! 7 gets deleted

27 28

