Priority Queues
(Today: Skew Heaps & Binomial Queues)

Chapter 6 in Weiss

Review Merging 2 Leftist Heaps
• \text{merge}(T_1, T_2)\text{ returns one leftist heap containing} all elements of the two (distinct) leftist heaps \(T_1\) and \(T_2\)

Leftist Merge Continued
If \(npl(R') > npl(L_1)\)

Leftist Merge Example
\(\text{merge}\)

Sewing Up the Leftist Example
\(\text{merge}\)

Finally…(Leftist)
Operations on Leftist Heaps
- **merge** with two trees of total size n: \(O(\log n)\)
- **insert** with heap size n: \(O(\log n)\)
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap
- **deleteMin** with heap size n: \(O(\log n)\)
 - remove and return root
 - merge left and right subtrees

Random Definition: Amortized Time
- **amortized time**: Running time limit resulting from “writing off” expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If \(M\) operations take total \(O(M \log N)\) time, amortized time per operation is \(O(\log N)\)

Difference from average time:

Skew Heaps
Problems with leftist heaps
- extra storage for npl
- extra complexity/logic to maintain and check npl
- right side is “often” heavy and requires a switch
Solution: skew heaps
- “blindly” adjusting version of leftist heaps
- **merge always** switches children when fixing right path
- amortized time for: merge, insert, deleteMin = \(O(\log n)\)
- however, worst case time for all three = \(O(n)\)

Merging Two Skew Heaps
- Only one step per iteration, with children always switched

Example

Skew Heap Code
```c
void merge(heap1, heap2) {
    case {
        heap1 == NULL: return heap2;
        heap2 == NULL: return heap1;
        heap1.findMin() < heap2.findMin():
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge(heap2, temp);
            return heap1;
        otherwise:
            return merge(heap2, heap1);
    }
}
```
Runtime Analysis:
Worst-case and Amortized
• No worst case guarantee on right path length!
• All operations rely on merge
⇒ worst case complexity of all ops =
• Will do amortized analysis later in the course (see chapter 11 if curious)
• Result: M merges take time $M \log n$
⇒ amortized complexity of all ops =

Comparing Heaps
• Binary Heaps
• Leftist Heaps
• d-Heaps
• Skew Heaps

Still scope for improvement!

Yet Another Data Structure:
Binomial Queues
• Structural property
 – Forest of binomial trees with at most one tree of any height
 What’s a forest?
 What’s a binomial tree?
• Order property
 – Each binomial tree has the heap-order property

The Binomial Tree, B_h
• B_h has height h and exactly 2^h nodes
• B_h is formed by making B_{h-1} a child of another B_{h-1}
• Root has exactly h children
• Number of nodes at depth d is binomial coeff. $\binom{h}{d}$
 – Hence the name; we will not use this last property

Binomial Queue with n elements
Binomial Q with n elements has a unique structural representation in terms of binomial trees!
Write n in binary: $n = 1101$ (base 2) = 13 (base 10)

Properties of Binomial Queue
• At most one binomial tree of any height
• n nodes ⇒ binary representation is of size?
 ⇒ deepest tree has height?
 ⇒ number of trees is?

Define: $height(F) = \max_{T \in F} \{ height(T) \}$

Binomial Q with n nodes has height $\Theta(\log n)$
Operations on Binomial Queue

- Will again define **merge** as the base operation
 - insert, deleteMin, buildBinomialQ will use merge
- Can we do increaseKey efficiently? decreaseKey?
- What about findMin?

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For \(k \) from 1 to maxheight {
 a. \(m \leftarrow \text{total number of } B_k \text{'s in the two BQs} \)
 b. if \(m = 0 \): continue;
 c. if \(m = 1 \): continue;
 d. if \(m = 2 \): combine two \(B_k \)'s to form a \(B_{k+1} \)
 e. if \(m = 3 \): retain one \(B_k \) and combine the other two to form a \(B_{k+1} \)
}

Claim: When this process ends, the forest has at most one tree of any height

Example: Binomial Queue Merge

H1: H2:

Example: Binomial Queue Merge

H1: H2:

Example: Binomial Queue Merge

H1: H2:

Example: Binomial Queue Merge

H1: H2:
Example: Binomial Queue Merge

H1:
H2:

Merge Example

Complexity of Merge

Constant time for each height
Max height is: log \(n \)

\[\Rightarrow \text{worst case running time} = \Theta() \]

Insert in a Binomial Queue

Insert(\(x \)): Similar to leftist or skew heap

\[\text{runtime} \]

Worst case complexity: same as merge
\[O() \]

Average case complexity: \(O(1) \)

Why?? \(\text{Hint: Think of adding 1 to 1101} \)

deleteMin in Binomial Queue

Similar to leftist and skew heaps....
deleteMin: Example

find and delete smallest root

merge BQ (without the shaded part) and BQ'

Result:

runtime: