Priority Queues
(Leftist Heaps & Skew Heaps)
Chapter 6 in Weiss

A Solution: d-Heaps
• Each node has d children
• Still representable by array
• Good choices for d:
 – (choose a power of two for efficiency)
 – fit one set of children in a cache line
 – fit one set of children on a memory page/disk block

Operations on d-Heap
• Insert : runtime =
• deleteMin: runtime =

Does this help insert or deleteMin more?

One More Operation
• Merge two heaps. Ideas?

New Operation: Merge
Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller heap into the larger.
 runtime:
– second attempt: concatenate binary heaps’ arrays and run buildHeap.
 runtime:
Leftist Heaps

Idea:
Focus all heap maintenance work in one small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

Definition: Null Path Length

null path length (npl) of a node x = the number of nodes between x and a null in its subtree

OR

npl(x) = min distance to a descendant with 0 or 1 children

- npl(null) = -1
- npl(leaf) = 0
- npl(single-child node) = 0

Equivalent definitions:
1. npl(x) is the height of largest complete subtree rooted at x
2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

Leftist Heap Properties

- **Heap-order property**
 - parent’s priority value is ≤ to children’s priority values
 - result: minimum element is at the root

- **Leftist property**
 - For every node x, npl(left(x)) ≥ npl(right(x))
 - result: tree is at least as “heavy” on the left as the right

Are leftist trees…
- complete?
- balanced?

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.

Proof: (By contradiction)

Pick a shorter path: D₁ < D₂

Say it diverges from right path at x

npl(L) ≤ D₁-1 because of the path of length D₁-1 to null

npl(R) ≥ D₂-1 because every node on right path is leftist

Leftist property at x violated!

Right Path in a Leftist Tree is Short (#2)

Claim: If the right path has r nodes, then the tree has at least \(2^r-1\) nodes.

Proof: (By induction)

- **Base case:** if r=1, tree has at least \(2^1-1 = 1\) node
- **Inductive step:** assume true for \(r' < r\). Prove for tree with right path of length at least \(r\).
 1. Right subtree: right path of \(r-1\) nodes
 \(\Rightarrow 2^{r-1}-1\) right subtree nodes by induction
 2. Left subtree: also right path of length at least \(r-1\) (by previous slide)
 \(\Rightarrow 2^{r-1}-1\) left subtree nodes by induction

Total tree size: \((2^{r-1}-1) + (2^{r-1}-1) + 1 = 2^r-1\)
Why do we have the leftist property?

Because it guarantees that:
• the right path is really short compared to the number of nodes in the tree
• A leftist tree of N nodes, has a right path of at most \(\log(N+1) \) nodes

Idea – perform all work on the right path

Merge two heaps (basic idea)

• Put the smaller root as the new root,
• Hang its left subtree on the left.
• Recursively merge its right subtree and the other tree.

Merging Two Leftist Heaps

• \(\text{merge}(T_1, T_2) \) returns one leftist heap containing all elements of the two (distinct) leftist heaps \(T_1 \) and \(T_2 \)

Let’s do an example, but first…

Other Heap Operations

• insert ?
• deleteMin ?

Operations on Leftist Heaps

• \(\text{merge} \) with two trees of total size \(n \): \(O(\log n) \)
• \(\text{insert} \) with heap size \(n \): \(O(\log n) \)
 – pretend node is a size 1 leftist heap
 – insert by merging original heap with one node heap

• \(\text{deleteMin} \) with heap size \(n \): \(O(\log n) \)
 – remove and return root
 – merge left and right subtrees
Merge Example

Sewing Up the Example

Finally…