Priority Queues
(Leftist Heaps & Skew Heaps)

Chapter 6 in Weiss

10/9/2006 1

Cycles to access:

CPU

I:':I cate

Memory

Disk

10/9/2006 2

A Solution:d-Heaps

Each node had children
Still representable by
array

Good choices fod:
— (choose a power of two (4) 8 @ @) WG ©

for efficiency)
— fit one set of children in‘laz 1]3[7]2[4]8[512111 6]9]

cache line

— fit one set of children on a
memory page/disk block

10/9/2006 3

Operations oml-Heap

* Insert runtime =

e deleteMin: runtime =

Does this help insert or deleteMin more?

10/9/2006 4

One More Operation

* Merge two heaps. Ideas?

10/9/2006 5

New Operation: Merge

Given two heaps, merge them into one heap

— first attempt: insert each element of the smaller
heap into the larger.

runtime:

— second attempt: concatenate binary heaps’
arrays and run buildHeap.

runtime:

10/9/2006 6

Leftist Heaps

Idea:

Focus all heap maintenance work in one
small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

10/9/2006

Leftist Heap Properties
e Heap-order property

— parent’s priority value is to childrens’ priority
values

— result minimum element is at the root

* Leftist property
— For every nodg, npl(left(x)) = npl(right(x))
—result tree is at least as “heavy” on the left as thatfig
Are leftist trees...

complete?

10612006 balanced?

Right Path in a Leftist Tree is Short (#]

Claim: The right path is as short asy in the tree.
Proof (By contradiction)

N

Pick a shorter path: 3 D, ‘
Say it diverges from right path at
O

npl(L) <D;-1 because of the path of

length B-1 to null ‘ G Q

Dl : ° A

npl(R)=D,-1 because every node onl ° .

right path is leftist O .

10/9/2006

Leftist property ak violated! Q

Definition: Null Path Length

null path length (npl) of a nodex = the number of nodes between
and a nullin its subtree

OR
npl(x) = min distance to a descendant with 0 ohildeen

e npl(null) =-1

« npl(leaf) =0

« npl(single-child node) = 0 ©. ,
Equivalent definitions: © @ “ ©

1. npl(x) is the height of largest : ““
complete subtree rootedat @ @ @
2. npl(x) = 1 + minfnpl(left(x)), npl(right(x))}

10/9/2006

Are These Leftist?

Je ® ®
o8 © ® ®
OO ® © 6 0o
OO 00 O

QO

:
©
Every subtree of a leftist o
treeisleftist!

©

10/9/2006 10

Right Path in a Leftist Tree is Short (#2

Claim: If the right path has nodes, then the tree hg
at least
2"-1 nodes.

Proof (By induction)
Base case :r=1. Tree has at leagt-1 =1
Inductive step : assume true far<r
path at least .
1. Right subtree: right path ofL nodes
= 2r1 -1 right subtree nodes (by induction)
2. Left subtree: also right path of length asteal (by previous
slide) = 2r1 -1 left subtree nodes (by induction)
Total tree size:31 -1)+ (2 ™1 -1)+1=2 r-1

node
. Prove for tree with right

10/9/2006 12

1S

Why do we have the leftist property?

Because it guarantees that:

* theright path isreally short compared to
the number of nodes in the tree

* A leftist tree of N nodes, has a right path of
at most log (N+1) nodes

Idea — perform all work on the right path

10/9/2006 13

Merge two heaps (basic idea)

¢ Put the smaller root as the new root,
e Hang its left subtree on the left.

« Recursivelymerge its right subtree and the
other tree.

10/9/2006 14

Merging Two Leftist Heaps

* merge(T,T,) returns one leftist heap
containing all elements of the two (distinct)
leftist heaps Tand T,

ANVAN AN "’e’g ,,,,,,,,,,,,
AN AA.

Merge Continued

If npl(R") >npl(L,)

ANVANANA

R =Merge(R, T,)

runtime:

10/9/2006 16

Let’s do an example, but first...
Other Heap Operations

* insert ?

» deleteMin ?

10/9/2006 17

Operations on Leftist Heaps

» mergewith two trees of total size n: O(log n)
« insertwith heap size n: O(log n)
— pretend node is a size 1 leftist heap
— insert by merging original heap with one node heap

JANCEYAN

« deleteMinwith heap size n: O(log n)
— remove and return root
— merge left and right subtrees

> - : i i ‘ merge, ‘
10/9/2006 18

10/9/2006

Merge Example

(special case)

¢

0

10/9/2006

Sewing Up the Example

Finally...

10/9/2006

21

