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Final Review Sheet 

CSE 326: Data Structures 
Autumn 2006 

 
The final 
 
In class, Wednesday, 12/13/06, 2:30-4:20 PM 
 
 
Syllabus 
 

§ Everything covered in the course 
§ Less emphasis on material covered before the midterm 
§ Closed book, closed notes! 

 
 
Reading list from the textbook (for topics covered after the midterm) 
 

§ Disjoint Sets  Chapter 8 
Excluding 8.6.1 
 

§ Sorting   Chapter 7 
Excluding 7.4, average-case Q Sort anal, 7.10.5 onwards 
 

§ Graphs   Chapter 9 
Excluding 9.3.3, 9.3.4, 9.4, 9.6 onwards 

 
§ Amortized analysis Chapter 11 

Excluding 11.4  
 

 
 
Disjoint Set ADT 
 

§ Operations: Find(x), Union(A,B), MakeNewSet(x) 
 

§ Application to Maze construction 
 

§ Can’t have an implementation that guarantees 
�

(1) worst-case time for both 
find() and union(); so we shoot for 

�
(1) amortized-case time 

 
§ Union-find data structure: forest of up-trees, nifty array storage 
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o Union-by-size 
(union-by-height was on homework #3; what’s a potential implementation 
problem with union-by-height if you also want to use path compression?) 
 

o Path compression 
 

§ Two really slow growing functions: log* n,  inverse Ackermann’s function 
 

§ Analysis not covered in class 
 

 
 
Sorting: (A) Comparison-based 
 

§ Worst-, best-, average-case bounds for all sorting algorithms 
 

§ 
�

(n2) sorts: Insertion sort, Selection sort 
 

o Simple to implement 
o Less overhead: useful when n is small 
o Worst-, best- and average-case runtime? 

 
§ 

�
(n log n) sorts: 

 
o Using data structures we have learned: Heap sort, AVL sort (or tree 

sort of some kind); bounds follow from data structure analysis 
 

o Divide-and-conquer techniques: Merge sort, Quick sort 
We did not prove average-case bound for Quick sort in class 
 

 
Sorting: (B) In � (n) time 
 

§ Bucket sort 
o Useful when the numbers are known to be in a small range, 1 to K 

 
§ Radix sort 

o Break-up the rage into smaller chunks 
o Sort from least significant to most significant using some stable sort 

 
 
Sorting: (C) External 
 

§ Useful when too many numbers to fit in memory 
 

§ External device model 
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o Stage 1: sort chunks that will fit into memory 
o Stage 2: repeatedly merge, switching between devices 

 
 
Sorting: (D) Lower Bounds 
 

§ Flavors of lower bounds 
 

1. for an algorithm or operation on a structure 
2. for a problem 
3. for a class of algorithms for a problem 

 
§ Bound #1: Sorting by exchanging adjacent elements: � (n2) 

 
o Proof based on counting number of inversions 

 
 
§ Bound #2: Sorting by comparisons: � (n log n) 

 
o Proof based on decision trees 

 
 

Graphs: (A) Basics 
 

§ Kinds: (un)directed, (un)weighted, (a)cyclic, (un)connected 
 

§ Representations: Adjacency Matrix, Adjacency List 
 

§ Natural problems with applications: Shortest path, minimal spanning network, 
strong connectivity, orderings, dependency graphs 
 

§ Traversals: DFS, BFS, Best-first, Topological sort order 
 

 
Graphs: (B) Shortest path algorithms 
 

§ Problem flavors: Shortest path from s to t    vs.   SSSP    vs.   APSP 
 

§ Unweighted: BFS 
 

§ Weighted: Dijkstra’s algorithm (greedy) 
o Table of known/unknown and current cost 
o What more do you need to maintain to output path at the end? 
o Inductive proof of correctness 
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§ Negative-cost cycles: problem! 
 

§ Negative-cost edges but no negative-cost cycles: mentioned in Homework #3 
 

 
Graphs: (C) Minimum spanning tree 
 

§ Different problem than shortest paths 
 

§ Prim’s algorithm: similar to Dijkstra’s algorithm 
 

§ Kruskal’s algorithm: uses disjoint set ADT, also greedy 
 

 
Amortized analysis 
 

§ General technique 
 

o Introduce Potential function such that actual time plus change in potential 
function doesn’t vary much over successive operations 
 

o Tactual + ∆Potential = Tamortized 

 
o Do a telescopic sum.  If net change in potential is non-negative, then sum 

of assumed amortized times is an upper bound on the sum of actual times 
 

§ Binomial Queue analysis: buildBQ(n) takes amortized time 
�

(n) 
 

o Tactual = Ci = cost of ith insert 
 

o Potential = Ti = number of trees after the ith insert 
 

§ Skew heap analysis: merge() takes amortized time 
�

(log n) 
 

o Define heavy and light nodes 
 

o Tactual = sum of lengths of right paths 
 

o Potential = number of heavy nodes in the two trees 
 

 
 
Compression 
 

§ Motivation and basics 
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§ Lossy vs Lossless compression 
 

§ Huffman Trees 
o Structure 
o Decoding 
o Construction Algorithm 
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Topics Covered Before the Midterm 

 
(See Midterm Review Sheet for more details) 

 
 
 
Introduction 
 

• Concepts vs. Mechanisms 
 

• All Data Structures we have seen can implement all ADTs we have seen. 
However, they differ in efficiency. 
 

• Simple ADTs: List, Stack, Queue 
 

 
Algorithm Analysis 
 

• Asymptotic complexity 
 

• Two orthogonal axes: 
1. worst-case, best-case, average-case, amortized 
2. upper bound (O or o), lower bound (�  or ω),  tight bound (

�
) 

 
• Big-Oh notation 

 
• Proofs of correctness or complexity bounds 

 
 
Priority Queue ADT 
 

• Characterized by deleteMin() operation; usually inefficient for find(k) 
 

• Useful for greedy applications 
 
• Implementations include 
 

1. Simple stuff: array, linked lists (sorted or unsorted) 
2. Binary heap 
3. Leftist heap 
4. Skew heap 
5. Binomial Queues 
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6. d-heap 
 
 

Search ADT / Dictionary ADT 
 

• Characterized by find(k), insert(k), delete(k) 
 

• Useful for search based applications 
 

• Also useful for sorting based applications unless the data structure used is a hash 
table like structure that doesn’t organize data using ordering information 
 

• Implementations include 
 

1. Simple stuff: array, linked lists (sorted or unsorted) 
2. Binary Search Tree (unbalanced) 
3. AVL Tree 
4. Splay Tree 
5. B-trees (2-3 trees, 2-3-4 trees) 
6. Hash table 

§ Separate chaining 
§ Open addressing 
§ Rehashing: can be used with separate chaining or open addr 
§ Extendible hashing 

 


