
 Page 1 of 7

Final Review Sheet

CSE 326: Data Structures
Autumn 2006

The final

In class, Wednesday, 12/13/06, 2:30-4:20 PM

Syllabus

§ Everything covered in the course
§ Less emphasis on material covered before the midterm
§ Closed book, closed notes!

Reading list from the textbook (for topics covered after the midterm)

§ Disjoint Sets Chapter 8
Excluding 8.6.1

§ Sorting Chapter 7
Excluding 7.4, average-case Q Sort anal, 7.10.5 onwards

§ Graphs Chapter 9
Excluding 9.3.3, 9.3.4, 9.4, 9.6 onwards

§ Amortized analysis Chapter 11

Excluding 11.4

Disjoint Set ADT

§ Operations: Find(x), Union(A,B), MakeNewSet(x)

§ Application to Maze construction

§ Can’t have an implementation that guarantees
�

(1) worst-case time for both
find() and union(); so we shoot for

�
(1) amortized-case time

§ Union-find data structure: forest of up-trees, nifty array storage

 Page 2 of 7

o Union-by-size
(union-by-height was on homework #3; what’s a potential implementation
problem with union-by-height if you also want to use path compression?)

o Path compression

§ Two really slow growing functions: log* n, inverse Ackermann’s function

§ Analysis not covered in class

Sorting: (A) Comparison-based

§ Worst-, best-, average-case bounds for all sorting algorithms

§
�

(n2) sorts: Insertion sort, Selection sort

o Simple to implement
o Less overhead: useful when n is small
o Worst-, best- and average-case runtime?

§

�
(n log n) sorts:

o Using data structures we have learned: Heap sort, AVL sort (or tree

sort of some kind); bounds follow from data structure analysis

o Divide-and-conquer techniques: Merge sort, Quick sort
We did not prove average-case bound for Quick sort in class

Sorting: (B) In � (n) time

§ Bucket sort
o Useful when the numbers are known to be in a small range, 1 to K

§ Radix sort

o Break-up the rage into smaller chunks
o Sort from least significant to most significant using some stable sort

Sorting: (C) External

§ Useful when too many numbers to fit in memory

§ External device model

 Page 3 of 7

o Stage 1: sort chunks that will fit into memory
o Stage 2: repeatedly merge, switching between devices

Sorting: (D) Lower Bounds

§ Flavors of lower bounds

1. for an algorithm or operation on a structure
2. for a problem
3. for a class of algorithms for a problem

§ Bound #1: Sorting by exchanging adjacent elements: � (n2)

o Proof based on counting number of inversions

§ Bound #2: Sorting by comparisons: � (n log n)

o Proof based on decision trees

Graphs: (A) Basics

§ Kinds: (un)directed, (un)weighted, (a)cyclic, (un)connected

§ Representations: Adjacency Matrix, Adjacency List

§ Natural problems with applications: Shortest path, minimal spanning network,
strong connectivity, orderings, dependency graphs

§ Traversals: DFS, BFS, Best-first, Topological sort order

Graphs: (B) Shortest path algorithms

§ Problem flavors: Shortest path from s to t vs. SSSP vs. APSP

§ Unweighted: BFS

§ Weighted: Dijkstra’s algorithm (greedy)
o Table of known/unknown and current cost
o What more do you need to maintain to output path at the end?
o Inductive proof of correctness

 Page 4 of 7

§ Negative-cost cycles: problem!

§ Negative-cost edges but no negative-cost cycles: mentioned in Homework #3

Graphs: (C) Minimum spanning tree

§ Different problem than shortest paths

§ Prim’s algorithm: similar to Dijkstra’s algorithm

§ Kruskal’s algorithm: uses disjoint set ADT, also greedy

Amortized analysis

§ General technique

o Introduce Potential function such that actual time plus change in potential
function doesn’t vary much over successive operations

o Tactual + ∆Potential = Tamortized

o Do a telescopic sum. If net change in potential is non-negative, then sum

of assumed amortized times is an upper bound on the sum of actual times

§ Binomial Queue analysis: buildBQ(n) takes amortized time
�

(n)

o Tactual = Ci = cost of ith insert

o Potential = Ti = number of trees after the ith insert

§ Skew heap analysis: merge() takes amortized time
�

(log n)

o Define heavy and light nodes

o Tactual = sum of lengths of right paths

o Potential = number of heavy nodes in the two trees

Compression

§ Motivation and basics

 Page 5 of 7

§ Lossy vs Lossless compression

§ Huffman Trees
o Structure
o Decoding
o Construction Algorithm

 Page 6 of 7

Topics Covered Before the Midterm

(See Midterm Review Sheet for more details)

Introduction

• Concepts vs. Mechanisms

• All Data Structures we have seen can implement all ADTs we have seen.
However, they differ in efficiency.

• Simple ADTs: List, Stack, Queue

Algorithm Analysis

• Asymptotic complexity

• Two orthogonal axes:
1. worst-case, best-case, average-case, amortized
2. upper bound (O or o), lower bound (� or ω), tight bound (

�
)

• Big-Oh notation

• Proofs of correctness or complexity bounds

Priority Queue ADT

• Characterized by deleteMin() operation; usually inefficient for find(k)

• Useful for greedy applications

• Implementations include

1. Simple stuff: array, linked lists (sorted or unsorted)
2. Binary heap
3. Leftist heap
4. Skew heap
5. Binomial Queues

 Page 7 of 7

6. d-heap

Search ADT / Dictionary ADT

• Characterized by find(k), insert(k), delete(k)

• Useful for search based applications

• Also useful for sorting based applications unless the data structure used is a hash
table like structure that doesn’t organize data using ordering information

• Implementations include

1. Simple stuff: array, linked lists (sorted or unsorted)
2. Binary Search Tree (unbalanced)
3. AVL Tree
4. Splay Tree
5. B-trees (2-3 trees, 2-3-4 trees)
6. Hash table

§ Separate chaining
§ Open addressing
§ Rehashing: can be used with separate chaining or open addr
§ Extendible hashing

