
CSE 326

Homework 5

Solutions

1. Assume we have the helper function ht that computes the height of a node of the
AVL tree from its height field. That is,

ht(n : node) : integer

{

if n = null then return(-1) else return(n.height)

}

In order to do an AVL tree deletion we do exactly a normal binary tree deletion, but
before returning from the recursive delete function we check for imbalance: if there is
one we do the appropriate rebalancing and if there is no imbalance then we recompute
the height of the node because if may have changed. We assume we have the four
functions single-rotate-right, single-rotate-left, double-rotate-right, and
double-rotate-left. Each of these functions recomputes the heights of the rotated
nodes correctly. We assume that the four fields of the AVL-tree nodes are data, left,
right, and height.

AVL-delete(x: key, p: reference node pointer)

{

local pointer q; \\ node to be physically deleted

local integer hl; \\ height of left child of p

local integer hr; \\ height of right child of p

if not(p=null) then

{

case

p.data < x: AVL-delete(x, p.right);

p.data > x: AVL-delete(x. p.left);

p.data = x:

case

p.left = null: p := p.right;

p.right = null: p := p.left;
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otherwise:

{

q := Successor(p);

p.data := q.data;

AVL-delete(q.data,p.right)

}

endcase

endcase

hl := ht(p.left);

hr := ht(p.right);

case

abs(hl - hr) <= 1: \\ no rebalance needed, but recompute height

p.height := max(ht(p.left),ht(p.right)) + 1

hr < hl: \\ left subtree is higher than the right and not null

if ht(p.left.left) >= ht(p.left.right) then

single-rotate-left(p)

else

double-rotate-left(p)

otherwise: \\ right subtree is higher than the left and not null

if ht(p.right.right) >= ht(p.right.left) then

single-rotate-right(p)

else

double-rotate-right(p)

endcase

}

}

Update heights on deletion path
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2. Insert 8
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To delete 10, first splay 10 to root with zig from left
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3. insert 1
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insert 9
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4. Let M be the maximum number of children of an internal node and let L be the
maximum number of keys per leaf. Because each internal node can have as many as
M children, M − 1 keys, and a 2 byte length field we have:

4M + 4(M − 1) + 2 ≤ 2048.

Hence M ≤ 2050/8 = 256.25. So the maximum value of M is 256.

Because each leaf has L pointers to data, L keys, and a 2 byte length field we have:

4L + 4L + 2 ≤ 2048.

Hence L ≤ 2046/8 = 255.75. So the maximum value of L is 255.

To calculate the height we’ll assume that leaves and internal nodes (other than the
root) are about 3/4-th full. Hence leaves have about 255 × .75 ≈ 191 keys each and
internal nodes (other than the root have about 256 × .75 ≈ 192 children each. The
total number of leaves is about 100, 000, 000/191 ≈ 523, 560. The total number of
internal nodes at depth 1 is approximately 523, 560/192 ≈ 2, 727. The total number
of nodes at depth 2 is approximately 2, 727/192 ≈ 15. The root at depth 3 has about
15 children. Thus, the height of the tree is 3.

There are 224/211 = 213 = 8, 192 pages that fit in memory. Each page holds exactly
one node of the B-tree. The root, its 15 children, and their 2, 880 children all fit in
memory. In addition, 8, 192 − (1 + 15 + 2, 880) = 5, 246 leaves fit in memory. So the
first three levels and a small fraction, 5246/523560 ≈ .01, of the leaves fit in memory.

The worst case number of disk accesses is 2 because in the worst case a leaf and the
data associated with the key must be accessed on disk. The average number of disk
accesses is 1 × .01 + 2 × .99 = 1.99 which is essentially 2.

5. Label the points

a b c d e
(10,20) (20,10) (15,15) (5,10) (10,4)

Sort in both coordinates

X- d a e c b
Y- e b d c a

Find root: Widest spread is in the y-coordinate with e and a. The points in the
y-dimension using say 12. Split the arrays, Y stays the same, but X has to be “un-
shuffled”.

X- d e b a c
Y- e b d c a

Find the left child of root: The widest spread is the x-dimension among d,e,b. Split
in the x-dimension say at 15. Split the arrays.

X- d e b a c
Y- e d b c a
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Find the left and right children of the left child of the root. The widest spread among
d,e is the y-dimension. Split in the y-dimension say at 8. Split the arrays.

X- e d b a c
Y- e d b c a

Return to the right child of the root to find its two children. The widest spread among
a,c is the same in both dimensions. Split in the x-dimension at 7. Split the arrays.

X- e d b a c
Y- e d b a c

The resulting tree has the following structure.
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