Disjoint Union / Find

CSE 326
Data Structures
Lecture 13

Reading

» Reading
> Chapter 8

2/24/05 Disjoint Union/Find - Lecture 13

Disjoint Union - Find

+ Maintain a set of pairwise disjoint sets.
> {3,5,7} , {4,2,8}, {9}, {1,6}

» Each set has a unique name, one of its
members
> {3,5,7},{4,2,8}, {9}, {16}

2/24/05 Disjoint Union/Find - Lecture 13

Union

 Union(x,y) — take the union of two sets
named x and y
> {3,5,7}, {4,2,8}, {9}, {1.6}
> Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},

2/24/05 Disjoint Union/Find - Lecture 13

Find

 Find(x) — return the name of the set
containing x.
> {3,5,7,1,6}, {4,2,8}, {9},
> Find(1) = 5
> Find(4) = 8

2/24/05 Disjoint Union/Find - Lecture 13

Cute Application

+ Build a random maze by erasing edges.

2/24/05 Disjoint Union/Find - Lecture 13

Cute Application

Cute Application
* Pick Start and End
Start
End
2/24/05 Disjoint Union/Find - Lecture 13 7

» Repeatedly pick random edges to delete.

Desired Properties

* None of the boundary is deleted

 Every cell is reachable from every other
cell.

» There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.

2/24/05 Disjoint Union/Find - Lecture 13 9

Start ‘
End
2/24/05 Disjoint Union/Find - Lecture 13 8
Start ‘
End
2/24/05 Disjoint Union/Find - Lecture 13 10

A Good Solution

A Hidden Tree

Start

uull

2/24/05 Disjoint Union/Find - Lecture 13 "

End

Start

2/24/05 Disjoint Union/Find - Lecture 13 12

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cellis unto itself.

We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Stat 4 | 2 | 3|4|5]|6

7 18| 9 |10] 1112

13|14 | 15| 16 | 17 | 18

19120 | 21 |22 | 23 | 24

25 | 26 | 27 |28 | 29 | 30

31 |32|33|34|3 |36 End

2/24/05 Disjoint Union/Find - Lecture 13 13

Basic Algorithm

S = set of sets of connected cells
E = set of edges
Maze = set of maze edges initially empty

While there is more than one setin S
pick a random edge (x,y) and remove from E
u = Find(x);
v := Find(y);
if u #vthen
Union(u,v)
else
add (x,y) to Maze
All remaining members of E together with Maze form the maze

Example Step

2/24/05 Disjoint Union/Find - Lecture 13 14
Example
S S
{1,2,7,8,9,13,19} {1,2,7,8,9,13,19,14,20 26,27}
) Find(® =7 (3)
4 Find(14) =20 (4
5 {5)
{6} . 6
1o} Union(7,20) H})
{11,17} (11,17}
{12} {12}
{14,20,26,27} {15,16,21}
{15,16,21} i
: {22,23,24,29,39,32
{22,23,24,29,39,32 33,34,35,36}
33,34,35,36} -
2/24/05 Disjoint Union/Find - Lecture 13 16

Pick (8,14) s
{1,2,7,8,9,13,19}
{3}
Stat ¢ 2 ‘ 3|4|5]|6 {4}
{5}
7 8 9 10|11 |12 {6
{10}
13| 14|15 16|17 | 18 1117}
19 (20|21 |22 23|24 {12}
[{14,20,26,27}
25 |26 27|28 |29 30 {15,16,21}
31|32 33 34 35 36 End
{22,23,24,29,30,32
2/24/05 Disjoint Union/Find - Lecture 13 33,34,35,36} 15
Example
Pick (19,20) S
{1,2,7,8,9,13,19
14,20,26,27}
sat 1 2]3|4[s5]6 @
r— {4}
7 8 9101112 5}
{6}
1314 |15 16|17 | 18 {10}
19|20 21|22 23|24 {1117}
{12}
25 (26 27 |28|29 30 {15,16,21}
313 33 34 35 36 End |
{22,23,24,29,39,32

2/24/05 Disjoint Union/Find - Lecture 13 33,34,35,36} 17

Example at the End

S
{1,2,3,4,5,6,7,... 36}

Start 1 2|3 4 5 6

7 8 9 10 11 (12

— E
—— Maze

13|14 |15 16 17 | 18
19120 |21 22 23|24

25 26 27 28|29 30
31|32 33 34 35 36 End

2/24/05 Disjoint Union/Find - Lecture 13 18

Up-Tree for DU/F

Initial state @ @ @ @ @ @ @

Intermediate @
state

@ ® @

Roots are the names of each set. (‘g

2/24/05 Disjoint Union/Find - Lecture 13 19

Find Operation

* Find(x) follow x to the root and return

the root
1L * A
)

@

/
Find(6) = 7 “‘

2/24/05 Disjoint Union/Find - Lecture 13 20

Union Operation

+ Union(i,j) - assuming i and j roots, point i
toj.

—

& @
o § ®
é

2/24/05 Disjoint Union/Find - Lecture 13 21

Union(1,7)

Simple Implementation

* Array of indices
12 3 45 67

w [o]t]o[7[7]5]0]

@ e
@ ® @
®

2/24/05 Disjoint Union/Find - Lecture 13 22

Up[x] = 0 means
x is a root.

Union

Union(up[] : integer array, X,y : integer) : {
//precondition: x and y are roots//
Up[x] :=vy

}

Constant Time!

2/24/05 Disjoint Union/Find - Lecture 13 23

Exercise

» Design Find operator
> Recursive version
> lterative version

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
222

}

2/24/05 Disjoint Union/Find - Lecture 13 24

A Bad Case

® @ @ - @
® ®

ol
o
©

® Find(1) n steps!!

Union(1,2)

Union(2,3)

®
@ .
/.@ Union(n-1,n)

2/24/05 ({ Disjoint Union/Find - Lecture 13 25

Weighted Union

* Weighted Union
> Always point the smaller tree to the root of
the larger tree

W-Union(1,7)

2 1 C
2/24/05 Disjoint Union/Find - Lecture 13 26

Example Again

Analysis of Weighted Union

® @ @ - O
Union(1,2)
@ @ " @
({ Union(2,3)
/C@ P @ .
& o |
Union(n-1,n)
C{% Find(1) constant time
2/24/05 Disjoint Union/Find - Lecture 13 27

+ With weighted union an up-tree of height h
has weight at least 2".
+ Proof by induction
> Basis: h = 0. The up-tree has one node, 2° = 1
> Inductive step: Assume true for all h’ < h.

T W(T,) > W(T,) > 21

. : \
Minimum weight T Weigr{ted Induction
up-tree of height h h-1 union hypothesis
formed by l

weighted unions WMz s v =2n

2/24/05 Disjoint Union/Find - Lecture 13 28

Analysis of Weighted Union

Worst Case for Weighted
Union

* Let T be an up-tree of weight n formed
by weighted union. Let h be its height.

en>2h

* log,n>h

» Find(x) in tree T takes O(log n) time.
+ Can we do better?

2/24/05 Disjoint Union/Find - Lecture 13 29

n/2 Weighted Unions

8888338388

n/4 Weighted Unions

s % 5% %

2/24/05 Disjoint Union/Find - Lecture 13 30

Example of Worst Cast (cont’)

Elegant Array Implementation

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions

If there are n = 2k nodes then the longest
path from leaf to root has length k.

2/24/05 Disjoint Union/Find - Lecture 13 31

2 (:) 1 (:) 4 ‘a’

é@ ® @

o

== @)

123456
up [0[1]0]7]7]5
weight | 2 1
2/24/05 Disjoint Union/Find - Lecture 13 32

Weighted Union

Path Compression

W-Union (i, j : index) {
//i and j are roots//
wi := weight[i];
wj := weight[]];
if wi < wj then
up[i] := 3;
weight [j] := wi + wj;
else
up[Jj] :=i;
]

weight [1i = wi +twj;

2/24/05 Disjoint Union/Find - Lecture 13 33

» On a Find operation point all the nodes on the
search path directly to the root.

. @fégﬂﬁ@

o

2/24/05 Disjoint Union/Find - Lecture 13 34

Self-Adjustment Works

Path Compression Find

v

V| VVIVIN
PC-Find(x) 1\ \

x

QALY
14444444

2/24/05 Disjoint Union/Find - Lecture 13 35

PC-Find (i : index) {
r := i;
while up[r] # 0 do //find root//
r :=uplr];
if i # r then //compress path//
k :=upli];
while k # r do
up[i] := r;
i = k;
k := uplk]
return(r)

}

2/24/05 Disjoint Union/Find - Lecture 13 36

6@

& e

2/24/05 Disjoint Union/Find - Lecture 13 37

Disjoint Union / Find
with Weighted Union and PC

+ Worst case time complexity for a W-Union is
O(1) and for a PC-Find is O(log n).

» Time complexity for m > n operations on n
elements is O(m log* n) where log* nis a
very slow growing function.

> Log * n < 7 for all reasonable n. Essentially
constant time per operation!

+ Using “ranked union” gives an even better
bound theoretically.

2/24/05 Disjoint Union/Find - Lecture 13 38

Amortized Complexity

« For disjoint union / find with weighted
union and path compression.

> average time per operation is essentially a
constant.

> worst case time for a PC-Find is O(log n).

+ An individual operation can be costly,
but over time the average cost per
operation is not.

2/24/05 Disjoint Union/Find - Lecture 13 39

Find Solutions

Recursive

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//

if up([x] = 0 then return x

else return Find(up,up(x]);

}

lterative

Find(up[] : integer array, x : integer) : integer ({
//precondition: x is in the range 1 to size//
while up[x] # 0 do

x = up[x];
return x;

}

2/24/05 Disjoint Union/Find - Lecture 13 40

