
1

Trees

CSE 326

Data Structures

Lecture 6

1/21/05 Trees - Lecture 6 2

Readings and References

• Reading
› Chapter 4.1-4.3,

1/21/05 Trees - Lecture 6 3

Why Do We Need Trees?

• Lists, Stacks, and Queues are linear data
structures

• Information often contains hierarchical

relationships

› File directories or folders on your computer

› Moves in a game

› Employee hierarchies in organizations

1/21/05 Trees - Lecture 6 4

Tree Jargon

• root
• nodes and edges
• leaves

• parent, children, siblings
• ancestors, descendants

• subtrees

• path, path length
• height, depth

A

B C D

E F

1/21/05 Trees - Lecture 6 5

More Tree Jargon

• Length of a path = number
of edges

• Depth of a node N = length
of path from root to N

• Height of node N = length of
longest path from N to a leaf

• Height of tree = height of
root

A

B C D

E F

depth=?

height =?

depth = ?,

height=?
1/21/05 Trees - Lecture 6 6

Definition and Tree Trivia

• A tree is a set of nodes
• that is an empty set of nodes, or
• has one node called the root from which

zero or more trees (subtrees) descend

• A tree with N nodes always has ___
edges

• Two nodes in a tree have at most one
path between them

2

1/21/05 Trees - Lecture 6 7

Implementation of Trees

• One possible pointer-based Implementation

› tree nodes with value and a pointer to each child

› but how many pointers should we allocate space for?

• A more flexible pointer-based implementation

› 1st Child / Next Sibling List Representation

› Each node has 2 pointers: one to its first child and one to
next sibling

› Can handle arbitrary number of children

1/21/05 Trees - Lecture 6 8

Arbitrary Branching

A

B C D

E F

A

B C D

E F

Data

FirstChild Sibling

1/21/05 Trees - Lecture 6 9

Example Arithmetic Expression:

A + (B * (C / D))

How would you express this as a tree?

Application: Arithmetic
Expression Trees

1/21/05 Trees - Lecture 6 10

Example Arithmetic Expression:

A + (B * (C / D))

Tree for the above expression:

Application: Arithmetic
Expression Trees

• Used in most compilers
• No parenthesis need – use tree structure
• Can speed up calculations e.g. replace

/ node with C/D if C and D are known
• Calculate by traversing tree (how?)

+

A *

B /

C D

1/21/05 Trees - Lecture 6 11

Traversing Trees

• Preorder: Node, then Children

recursively

• Inorder: Left child recursively, Node,
Right child recursively (Binary Trees)

• Postorder: Children recursively, then

Node

+

A *

B /

C D

1/21/05 Trees - Lecture 6 12

Exercise: Computing Height

• int height(Tree t) {

• }

3

1/21/05 Trees - Lecture 6 13

Binary Trees

• Every node has at most two children
› Most popular tree in computer science

› Easy to implement, fast in operation

• Easy to implement: instead of sibling list, just left
and right.

• Given N nodes, what can we say about height?

• Given height h, what can we say about number of
nodes?

1/21/05 Trees - Lecture 6 14

Upper Bound on Number of
Nodes

• Define Nh to be the maximum number of
nodes in a binary tree of height h.

• Theorem: Nh = 2h+1-1

• Proof by induction on h.
› h=0. 2h+1-1 = 1 and Nh =1.

› h>0.

h-1

Nh = 2Nh-1 + 1
= 2(2h-1) + 1
= 2h+1-1

1/21/05 Trees - Lecture 6 15

Lower Bound on Height

• Theorem: Any binary tree with N nodes has

height > �log2N� - 1

• Proof.

• Let T be any binary tree of N nodes and let h
be its height.
N < Nh < 2h+1

log2N < h+1

�log2N� < h + 1
�log2N� - 1 < h

1/21/05 Trees - Lecture 6 16

Complete Binary Trees

• A complete binary tree of N node is one of
minimum height with the maximum depth
nodes on the left.

N=10

�log210� - 1 = 3

1/21/05 Trees - Lecture 6 17

A degenerate tree

1

5

2

3

4

7

6

A linked list with high overhead
and few redeeming characteristics

1/21/05 Trees - Lecture 6 18

The Search ADT

• Stores and retrieves keys

• Operations:

› Insert(key)

› Delete(key)

› Find(key)

› FindMin()

› FindMax()

4

1/21/05 Trees - Lecture 6 19

The Dictionary ADT

• Search ADT easily extends to

dictionary. Stored (key, value) pairs

• Operations:

› Insert(key, value)

› Find(key) => value

› Delete(key)

1/21/05 Trees - Lecture 6 20

Naïve implementations

insert find delete

Unsorted array

Sorted array

1/21/05 Trees - Lecture 6 21

Binary Search Trees

• Binary search trees are binary trees in
which

› all values in the node’s left subtree
are less than node value

› all values in the node’s right subtree
are greater than node value

• Operations:

› Find, FindMin, FindMax, Insert, Delete

9

5

10

96 99

94

97

1/21/05 Trees - Lecture 6 22

Binary SearchTree

9

5

10

96 99

94

97

data

left right

9

5 94

10 97

96 99

1/21/05 Trees - Lecture 6 23

Find

Find(T : tree pointer, x : element): tree pointer {

}

1/21/05 Trees - Lecture 6 24

FindMin

• Class Participation

• Design recursive FindMin operation that

returns the smallest element in a binary

search tree.
› FindMin(T : tree pointer) : tree pointer {

// precondition: T is not null //

???

}

5

1/21/05 Trees - Lecture 6 25

Insert Operation

• Insert(T: tree, X: element)

› Do a “Find” operation for X

› If X is found, then update
duplicates counter

› Else, “Find” stops at a
NULL pointer

› Insert Node with X there

• Example: Insert 95

10

96 99

94

97
?

1/21/05 Trees - Lecture 6 26

Insert 95

10

96 99

94

97

10

96 99

94

97

95

1/21/05 Trees - Lecture 6 27

Insert Done Very Elegantly

Insert(T : reference tree pointer, x : element) : integer {

if T = null then

T := new tree; T.data := x; return 1

case {

T.data = x : return 0;

T.data > x : return Insert(T.left, x);

T.data < x : return Insert(T.right, x);

}

}

Advantage of reference parameter is that the call has

the original pointer not a copy.

1/21/05 Trees - Lecture 6 28

Call by Value vs
Call by Reference

• Call by value

› Copy of parameter is used

• Call by reference

› Actual parameter is used

p pF(p)

used inside call of F

1/21/05 Trees - Lecture 6 29

Delete Operation

• Delete is a bit trickier…Why?

• Suppose you want to delete 10

• Strategy:

› Find 10

› Delete the node containing 10

• Problem: When you delete a node,

what do you replace it by?

94

10 97

5 24

11

17

1/21/05 Trees - Lecture 6 30

Delete Operation

• Problem: When you delete a node,
what do you replace it by?

• Solution:

› If it has no children, by NULL

› If it has 1 child, by that child

› If it has 2 children, by the node with
the smallest value in its right subtree
(the successor of the node)

94

10 97

5 24

11

17

6

1/21/05 Trees - Lecture 6 31

Delete “5” - No children

Find 5 node

Then Free
the 5 node and
NULL the
pointer to it

94

10 97

5 24

11

17

94

10 97

5 24

11

17

1/21/05 Trees - Lecture 6 32

Delete “24” - One child

Find 24 node

Then Free
the 24 node and

replace the

pointer to it with
a pointer to its

child

94

10 97

5 24

11

17

94

10 97

5 24

11

17

1/21/05 Trees - Lecture 6 33

Delete “10” - two children

Find 10,

Copy the smallest
value in

right subtree

into the node

Then recursively
Delete node with

smallest value

in right subtree
Note: it does not

have two children

94

10 97

5 24

11

17

94

11 97

5 24

11

17

1/21/05 Trees - Lecture 6 34

Delete “11” - One child

Remember
11 node

Then Free
the 11 node and

replace the

pointer to it with
a pointer to its

child

94

11 97

5 24

11

17

94

11 97

5 24

11

17

1/21/05 Trees - Lecture 6 35

FindMin Solution

FindMin(T : tree pointer) : tree pointer {

// precondition: T is not null //

if T.left = null return T

else return FindMin(T.left)

}

