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Trees 

CSE 326

Data Structures

Lecture 6
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Readings and References

• Reading 
› Chapter 4.1-4.3, 
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Why Do We Need Trees?

• Lists, Stacks, and Queues are linear data 
structures

• Information often contains hierarchical 

relationships 

› File directories or folders on your computer

› Moves in a game

› Employee hierarchies in organizations
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Tree Jargon

• root
• nodes and edges
• leaves

• parent, children, siblings
• ancestors,  descendants

• subtrees

• path, path length
• height, depth
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More Tree Jargon

• Length of a path = number 
of edges

• Depth of a node N = length 
of path from root to N

• Height of node N = length of 
longest path from N to a leaf

• Height of tree = height of 
root
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depth=?

height =?

depth = ?,

height=?
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Definition and Tree Trivia

• A tree is a set of nodes 
• that is an empty set of nodes, or 
• has one node called the root from which 

zero or more trees  (subtrees) descend

• A tree with N nodes always has ___
edges

• Two nodes in a tree have at most one 
path between them
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Implementation of Trees

• One possible pointer-based Implementation

› tree nodes with value and a pointer to each child

› but how many pointers should we allocate space for?

• A more flexible pointer-based implementation

› 1st Child / Next Sibling List Representation

› Each node has 2 pointers: one to its first child and one to 
next sibling

› Can handle arbitrary number of children
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Arbitrary Branching
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Data

FirstChild           Sibling
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Example Arithmetic Expression:

A + (B * (C / D) )

How would you express this as a tree?

Application: Arithmetic 
Expression Trees
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Example Arithmetic Expression:

A + (B * (C / D) )

Tree for the above expression:

Application: Arithmetic 
Expression Trees

• Used in most compilers
• No parenthesis need – use tree structure
• Can speed up calculations e.g. replace

/ node with C/D if C and D are known
• Calculate by traversing tree (how?) 

+

A *

B /

C D
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Traversing Trees

• Preorder: Node, then Children

recursively

• Inorder: Left child recursively, Node, 
Right child recursively (Binary Trees)

• Postorder: Children recursively, then 

Node

+

A *

B /

C D
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Exercise: Computing Height

• int height( Tree t ) {

• }
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Binary Trees

• Every node has at most two children
› Most popular tree in computer science

› Easy to implement, fast in operation

• Easy to implement: instead of sibling list, just left 
and right.

• Given N nodes, what can we say about height?

• Given height h, what can we say about number of 
nodes?
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Upper Bound on Number of 
Nodes

• Define Nh to be the maximum number of 
nodes in a binary tree of height h.

• Theorem: Nh = 2h+1-1

• Proof by induction on h.
› h=0. 2h+1-1 = 1 and Nh =1.

› h>0. 

h-1

Nh = 2Nh-1 + 1
= 2(2h-1) + 1
= 2h+1-1 
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Lower Bound on Height

• Theorem: Any binary tree with N nodes has 

height > �log2N� - 1

• Proof.

• Let T be any binary tree of N nodes and let h 
be its height.
N < Nh < 2h+1

log2N < h+1

�log2N� < h + 1
�log2N� - 1 < h
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Complete Binary Trees

• A complete binary tree of N node is one of 
minimum height with the maximum depth 
nodes on the left.

N=10

�log210� - 1 = 3
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A degenerate tree
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A linked list with high overhead
and few redeeming characteristics
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The Search ADT

• Stores and retrieves keys

• Operations:

› Insert(key)

› Delete(key)

› Find(key)

› FindMin()

› FindMax()
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The Dictionary ADT

• Search ADT easily extends to 

dictionary. Stored (key, value) pairs

• Operations:

› Insert(key, value)

› Find(key) => value

› Delete(key)
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Naïve implementations

insert find delete

Unsorted array

Sorted array
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Binary Search Trees

• Binary search trees are binary trees in 
which 

› all values in the node’s left subtree 
are less than node value

› all values in the node’s right subtree 
are greater than node value

• Operations:

› Find, FindMin, FindMax, Insert, Delete
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Binary SearchTree
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data
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Find

Find(T : tree pointer, x : element): tree pointer {

}
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FindMin

• Class Participation

• Design recursive FindMin operation that 

returns the smallest element in a binary 

search tree.
› FindMin(T : tree pointer) : tree pointer {

// precondition: T is not null //

???

}
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Insert Operation

• Insert(T: tree, X: element) 

› Do a “Find” operation for X

› If X is found, then update 
duplicates counter

› Else, “Find” stops at a 
NULL pointer

› Insert Node with X there

• Example: Insert 95
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96 99

94

97
?
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Insert 95
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Insert Done Very Elegantly

Insert(T : reference tree pointer, x : element) : integer {

if T = null then

T := new tree; T.data := x; return 1

case {

T.data = x : return 0;

T.data > x : return Insert(T.left, x);

T.data < x : return Insert(T.right, x);

}

}

Advantage of reference parameter is that the call has

the original pointer not a copy.
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Call by Value vs 
Call by Reference

• Call by value

› Copy of parameter is used

• Call by reference

› Actual parameter is used

p pF(p)

used inside call of F
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Delete Operation

• Delete is a bit trickier…Why?

• Suppose you want to delete 10

• Strategy:

› Find 10

› Delete the node containing 10

• Problem: When you delete a node,

what do you replace it by?
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Delete Operation

• Problem: When you delete a node,
what do you replace it by?

• Solution:

› If it has no children, by NULL

› If it has 1 child, by that child

› If it has 2 children, by the node with
the smallest value in its right subtree
(the successor of the node)
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Delete “5” - No children

Find 5 node

Then Free
the 5 node and 
NULL the 
pointer to it
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Delete “24” - One child

Find 24 node

Then Free
the 24 node and 

replace the 

pointer to it with
a pointer to its

child
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Delete “10” - two children

Find 10,

Copy the smallest
value in

right subtree

into the node

Then recursively
Delete node with 

smallest value

in right subtree
Note:  it does not

have two children
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Delete “11” - One child

Remember
11 node

Then Free
the 11 node and 

replace the 

pointer to it with
a pointer to its

child
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FindMin Solution

FindMin(T : tree pointer) : tree pointer {

// precondition: T is not null //

if T.left = null return T

else return FindMin(T.left)

}


