
1

NP-completeness

Outline

• Examples of Easy vs. Hard problems
– Euler circuit vs. Hamiltonian circuit

– Shortest Path vs. Longest Path

– 2-pairs sum vs. general Subset Sum

• Reducing one problem to another
– Clique to Vertex Cover

– Hamiltonian Circuit to TSP

– TSP to Longest Simple Path

• NP & NP-completeness

When is a problem easy?

• We’ve seen some “easy” graph 
problems:
– Graph search

– Shortest-path

– Minimum Spanning Tree

• Not easy for us to come up with, but 
easy for the computer, once we know 
algorithm.

When is a problem hard?

• Almost everything we’ve seen in class 

has had a near linear time algorithm

• But of course, computers can’t solve

every problem quickly.

• In fact, there are perfectly reasonable 
sounding problems that no computer 

could ever solve in any amount of time.

Today

• We’ll see 3 pairs of similar problems, 

one version easy, one version hard.

• The lesson is that seemingly mild

changes in problem statement can have 
a dramatic effect on algorithm speed.

Euler Circuits

• A cycle that passes through every edge 

exactly once.

• Give example graph (square with X 

through it.)



2

Hamiltonian Circuit

• A cycle that passes through every 

vertex exactly once.

• Give example graph

Finding an Eulerian Circuit

• Very simple criteria: If every vertex has 

even degree, then there is an Eulerian 
circuit.

• Reason: If a node has even degree, 
then one edge used to get to a node, 

and one edge used to get out. Never 
get stuck.

Finding a Hamiltonian Circuit

• Nothing to do but enumerate all paths and 

see if any are Hamiltonian.

• How many paths? Draw example from box 

graph.

• Can think of all paths as a tree. Branching 
factor approximated by average degree d. 

Then dN leaves (paths). Exponential. Recall 
exponential curves from first lecture.

Shortest vs. Longest Path

• Finding the shortest path is easy--that 

is, we know an efficient algorithm.
Namely DFS or BFS.

• How do we find the longest path?

Longest Path

• Again, no choice but to enumerate all 

paths.

• Q: Why doesn’t DFS work?

– A node is visited only once, therefore only 
one path through each node is considered. 
But as we saw, there could be 

exponentially many paths. DFS is exploring 
only one per node.

Subset Sum

• We saw 4 number sum in homework:

• Given a list of N integers and target k, 

are there 4 numbers that sum to k?

• General Subset Sum: Given N integers 

and a target k, is there some subset of 
integers that sum to k?



3

Solving Subset Sum

• Only thing to do is try every possible 

combination.

• How many possible subset are there of 

N integers?

– 2N. So again, exponential in input size.

• For 4 numbers there are N choose 4 

possible subsets to try. Approx. N4. 

Outline: Day 2

• We’ve seen that there are a bunch of 
problems that seem to be hard.

• Today we’ll see how these problems 
relate to one another.

• Def: P1 is reducible to P2 if there is a 
conversion from an instance X of P1 to 
an instance Y of P2 such that P1 is yes 
for X iff P2 is yes for Y.

Clique to Vertex Cover

• We can reduce Clique to Vertex Cover.

• Given an input (G, k) to Clique:

– Build graph G complement

– Let k’ = n – k

• Vertex Cover is “as hard as” Clique.

�

• If G has a k Clique then G’ has a k’

cover:

– Let C be the clique of size k. Let the cover 
be V-C. Then clearly every edge outside C 
is covered, and in G’ there are no edges in 

C.

– Size is n-k

�

• If G’ has a k’ cover then G has a k 

Clique:

– Let D be a cover in G’ of size k’. Then 
there are no edges in V-D, since otherwise 
they wouldn’t be covered. Therefore, V-D 

is a clique in G.

– Size of clique is n-k’.

TSP

• Travelling Salesman Problem:

– Given complete weighted graph G, integer k.

– Is there a cycle that visits all vertices with cost <= 
k?

• One of the canonical problems.

• Note difference from Hamiltonian cycle: graph 

is complete, and we care about weight.



4

Hamiltonian Cycle to TSP

• We can reduce Hamiltonian Cycle to TSP.

• Given graph G=(V, E):

– Construct complete graph G’ on N vertices with 
edge weights: 1 if (u, v) in E, 2 otherwise.

– Let k = N.

• Do example with N=5.

• TSP is “as hard as” Hamiltonian cycle.

Proof

• If G has a Hamiltonian Cycle then G’

has a tour of weight N.

– Obvious.

• If G’ has a tour of weight N, then G has 
a Hamiltonian Cycle.

– Obvious.

Ham. Cycle to longest path

• Recall, Longest Path: Given directed 

graph G, start node s, and integer k. Is 
there a simple path from s of length >= 

k?

• We’ll use Directed Hamiltonian Cycle.

The reduction

• Given a directed graph G.
– Pick any node as start vertex s.

– Create a new node t. For every edge (u, s), 
add an edge (u, t). Let k = N.

• Draw example

• Longest Path is “as hard as” Ham. 
Cycle

Proof

• If G has a Ham. Cycle, then G’ has a 
path of length k from s.
– Follow the cycle starting at s, at the last 

step go to t instead of s.

• If G’ has a path of length k from s, then 
G has a Ham. Cycle.
– Path must have hit every node exactly 

once, and last step in path could have 
formed cycle in G.

NP-completeness

• We’ve seen that there are seemingly 

hard problems. That’s kind of 
interesting.

• The really interesting part: A large class 
of these are equivalent. Solving one 

would give a solution for all of them!



5

• The pairs I picked weren’t important. There is 

a large class of problems, called NP-
complete, such that any one can be reduced 
to any other.

• So given an algorithm for any NP-complete 
problem, all the others can be solved.

• Conversely, if we can prove there is no 
efficient algorithm for one, then there are no 
efficient algorithms for any.

What’s NP-complete

• Satisfiability of logic formulas

• All sorts of constraint problems

• All sorts of graph problems

• Not an overstatement to say that every 
area of computer science comes up 

against NP-complete problems.

What do we do about it?

• Approximation Algorithm:

– Can we get an efficient algorithm that guarantees 
something close to optimal?

• Heuristics:

– Can we get something that seems to work well 
most of the time?

• Restrictions:

– Longest Path is easy on trees, for example. Many 
hard problems are easy for restricted inputs.


