
1

Memory Performance of
Algorithms

CSE 326

Data Structures

Lecture 4

1/10/05 Memory Performance of
Algorithms - Lecture 4

2

Algorithm Performance
Factors

• Algorithm choices (asymptotic running time)

› O(n2) or O(n log n) …

• Data structure choices

› List or Arrays

• Language and Compiler

› C, C++, Java, Fortran

• Memory performance

› How near is the data to the processor

1/10/05 Memory Performance of
Algorithms - Lecture 4

3

Moore’s Law

1/10/05 Memory Performance of
Algorithms - Lecture 4

4

Processor-Memory
Performance Gap

• x86 CPU speed (100x over 10 years)

10

100

1000

1

89 91 93 95 97 99 01

“Memory gap”

“Memory wall”

x x

x
x x

x

o

o

o

o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

1/10/05 Memory Performance of
Algorithms - Lecture 4

5

Program Model of Memory I
memory

Character

Integer

Double

32 bit = 4 byte

words

0

4
8

12
16

20

24
28

32

36
40

address

1/10/05 Memory Performance of
Algorithms - Lecture 4

6

Program Model of Memory II
Array A[0,9] of integers

A

A + 40

Record = struct = data object

a.data : double

a.next : pointer or reference

a.data

a.next

A pointer or reference is simply
an integer that represents a

memory address

2

1/10/05 Memory Performance of
Algorithms - Lecture 4

7

Memory Model vs. Reality

• The program memory model is very simple
and elegant

• The reality is not.

• Physical memory is organized in a hierarchy.
› Accessing memory close to the processor is fast

› Accessing memory far from the processor is
slower

• Caching allows for accessed data to be
moved closer to the processor.
› There is a win if that data is accessed again

1/10/05 Memory Performance of
Algorithms - Lecture 4

8

Levels in the Memory
Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-
cache 8-128KB

Off-chip cache; 128KB - 4MB

Main memory; up to 10GB

Secondary memory; many GB

Archival storage

SRAM; a few ns

SRAM/DRAM;

≈ 10-20 ns

DRAM; 40-100 ns

a few

milliseconds

1/10/05 Memory Performance of
Algorithms - Lecture 4

9

The Cache

direct mapped cache

memory

Cache hit : data accessed

is in the cache.
Cache miss : data accessed

Is not in the cache

1/10/05 Memory Performance of
Algorithms - Lecture 4

10

Memory Blocks

Addressable unit, usually

a byte

Memory block – unit of memory

transferred as a whole from

memory to cache. Sometimes
called “cache line”. Usually, 32

64 bytes (but growing in size).
Memory block size usually greater

than word size

1/10/05 Memory Performance of
Algorithms - Lecture 4

11

Why Memory Blocks

• Time to transfer x bytes is given by

T(x) = a + bx. (a is latency, b ∼ 1/bandwidth)

• Because a is large relative to b, it pays

to transfer more than one byte at a time.

› The hope is that bytes near the accessed

byte will be accessed soon – good spatial
locality.

1/10/05 Memory Performance of
Algorithms - Lecture 4

12

Locality

• Spatial locality : addresses near a

recently accessed byte are accessed
also.

• Temporal locality : the same address
that was accessed recently is accessed

again.

3

1/10/05 Memory Performance of
Algorithms - Lecture 4

13

Examples of Locality

• Good spatial locality
› Quicksort – the array is scanned

• Poor spatial locality
› Binary search – jump around the array

i j

1/10/05 Memory Performance of
Algorithms - Lecture 4

14

Examples of locality

• Good temporal locality
› For loop index i in a tight loop.

for i = 1 to n do { …}

• Poor temporal locality
› Repeated long scans that exceeds the cache size,

like in iterative merge sort.

cache size

1/10/05 Memory Performance of
Algorithms - Lecture 4

15

Classifying Cache Misses

• Compulsory misses – first time a block is
accessed
› Can never be avoided

• Capacity misses – data structure does not fit
in cache
› Can be avoided by algorithmic design.

• Conflict misses – several accessed blocks
map to the same location in cache
› Conflict misses are not much of a problem

because modern caches are set associative.

1/10/05 Memory Performance of
Algorithms - Lecture 4

16

Set Associative Cache

Two-way set associative cache

memory

• Two blocks of the cache can hold

blocks from the same parts of memory

• Replacement policy needed.

• Reduces conflict misses

1/10/05 Memory Performance of
Algorithms - Lecture 4

17

Cache Misses for Scans

Not in cacheIn cache

1/B misses per access where B is number of access per line

1/10/05 Memory Performance of
Algorithms - Lecture 4

18

Repeated Long Scans

Cache size

1st scan

2nd scan
beginning

4

1/10/05 Memory Performance of
Algorithms - Lecture 4

19

Repeated Long Scans

• Have good spatial locality

• Poor temporal locality

• If there are B accesses per memory
block then 1/B of the accesses are

cache misses.

1/10/05 Memory Performance of
Algorithms - Lecture 4

20

Iterative Mergesort

copy

Cache sizeCache miss

1/10/05 Memory Performance of
Algorithms - Lecture 4

21

Recursive Mergesort

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

8 2 9 4 5 3 1 6

1 2

3

4 5

6

7

1/10/05 Memory Performance of
Algorithms - Lecture 4

22

Recursive Mergesort

Cache size Cache miss

Cache hit

1/10/05 Memory Performance of
Algorithms - Lecture 4

23

Multi-mergesort

Cache size

sort sort

sort sort

Multi-merge

1/10/05 Memory Performance of
Algorithms - Lecture 4

24

sort in-place (if needed)

merge

merge

merge

merge

merge

merge

sort in-place

merge

1/2 cache size

Multi-Mergesort

5

1/10/05 Memory Performance of
Algorithms - Lecture 4

25

sort in-place (if needed)

merge

merge

merge

merge

merge

merge

sort in-place

merge

Multi-Mergesort Cache Behavior

1/2 cache size

1/10/05 Memory Performance of
Algorithms - Lecture 4

26

Quicksort

Cache size Cache miss

Cache hit

1/10/05 Memory Performance of
Algorithms - Lecture 4

27

Sorting Study from 1996

• Compared sorting algorithms

› Cache misses

› Instruction count

› Execution time

• The study is still valid today, because

the gap between processor speed and

memory speed is even larger.

1/10/05 Memory Performance of
Algorithms - Lecture 4

28

Algorithms

• Iterative mergesort

• Multi-mergesort

• Quicksort

1/10/05 Memory Performance of
Algorithms - Lecture 4

29

Cache Misses

Iterative merge

Quicksort

Multi-merge
0

2

4

6

8

10

12

10
00

20
00

40
00

80
00

16
00

0

32
00

0

64
000

12
80

00

25
60

00

51
20

00

10
24

000

20
48

000

40
96

000

Number of keys

c
a

c
h

e
 m

is
s

e
s

 p
e

r
k

e
y Quicksort

Iterative Merge

Multi-merge

1/10/05 Memory Performance of
Algorithms - Lecture 4

30

Instructions

Iterative merge

Quicksort

Multi-merge

0

50

100

150

200

250

300

350

10
00

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

12
80

00

25
60

00

51
20

00

10
24

000

20
48

000

40
96

000

number of keys

in
s

tr
u

c
ti

o
n

s
 p

e
r

k
e

y

Quicksort

Iterative Merge

Multi-merge

6

1/10/05 Memory Performance of
Algorithms - Lecture 4

31

Execution Time

Iterative merge

Quicksort

Multi-merge

0

200

400

600

800

1000

1200

1000 2000 4000 8000 16000 32000 64000 128000 256000 512000 1E+06 2E+06 4E+06

number of keys

e
x

e
c

u
ti

o
n

 t
im

e
 p

e
r

k
e

y
 i

n
 c

y
c

le
s Quicksort

Iterative Merge

Multi-merge

1/10/05 Memory Performance of
Algorithms - Lecture 4

32

Notes on Memory
Performance

• Memory performance may matter.

• Tips
› Sacrifice instructions to get better cache

performance.

› Smaller memory footprint is good.

› Divide and conquer is good.

› Processing data into cache sized pieces is good.

› Fully utilize memory blocks if possible
• Short scans are good.

• Multiway trees are good.

1/10/05 Memory Performance of
Algorithms - Lecture 4

33

External Memory Sort

• Memory bottleneck even worse for disk

• If input too big to fit in main memory,

regular sorting algorithms are too slow

• Whole subject of external sorting

1/10/05 Memory Performance of
Algorithms - Lecture 4

34

Disks

• In-memory sorting uses random access

model of memory. Disks are sequential.

• A movable head over a rotating platter

• Reading sequentially fast

• Seeking to new location slow

• Sort time dominated by number of

seeks

1/10/05 Memory Performance of
Algorithms - Lecture 4

35

One external sort model

• With only 1 sequential access memory,

sorting takes Omega(N2)

• We’ll use a model with 4 disks.

• Each can be read concurrently

• Call disks A1, A2, B1, B2

• Say main memory can hold M elements

1/10/05 Memory Performance of
Algorithms - Lecture 4

36

A simple algorithm

• Data initially on A1

• Sort block of size M in memory, writing

first half to B1, second half to B2

• Now merge half of B1 and B2 onto A1,

and the other half to A2

• Blocks are now of size 2M

• Repeat for log(N/M) steps.

