
1

Introduction

CSE 326

Data Structures

Lecture 1

1/3/05 Introduction - Lecture 1 2

Administrative

• Instructor: Ethan Phelps-Goodman (ethanpg@cs)

• TA: Ian Simon (iansimon@cs)

• See http://www.cs.washington.edu/326 for:
› Lecture, reading, and homeworks

› Exams

› Office hours

› Grading criteria

• Mailing list: cse326@cs
› Important course announcements—please read!

› Feel free to use for class discussion, questions, thoughts,
etc.

1/3/05 Introduction - Lecture 1 3

Class Overview

• Introduction to many of the basic data structures
used in computer software
› Understand the data structures

› Analyze the algorithms that use them

› Know when to apply them

• Practice design and analysis of data structures.

• Practice using these data structures by writing
programs.

• Data structures are the plumbing and wiring of
programs.

1/3/05 Introduction - Lecture 1 4

Goal (1)

• You will understand

› what the tools are for storing and
processing common data types

› which tools are appropriate for which need

• So that you will be able to

› make good design choices as a developer,
project manager, or system customer

1/3/05 Introduction - Lecture 1 5

Goal (2)

• Be able to:

› Reason formally about algorithms

› Communicate ideas about programs
clearly and precisely

• Homeworks are mostly written

› Need more than “correct” answer—need to
effectively communicate the ideas

1/3/05 Introduction - Lecture 1 6

Course Topics

• Introduction to Algorithm Analysis

• Sorting

• Memory Hierarchy

• Search Algorithms and Trees

• Hashing and Heaps

• Disjoint Sets

• Graph Algorithms

• Computational Geometry

2

1/3/05 Introduction - Lecture 1 7

Reading

• Reading in Data Structures and Algorithm

Analysis in Java, by Weiss

• For this week:

› Chapter 1 – (review) Mathematical preliminaries

• See especially page 10 for a good inductive proof.

› Chapter 2 – Algorithm Analysis

1/3/05 Introduction - Lecture 1 8

Projects and Homeworks

• Weekly homeworks

› Involve algorithms design and analysis

› No coding

• 3 projects

› Writing code

› Validating and Experimenting

› Writing

1/3/05 Introduction - Lecture 1 9

Psuedocode

• The algorithms you design in homework

will be read by a person, not a computer

• The No Code Rule:

› Do not turn in Java or C code when asked
for psuedocode

› Explain algorithm precisely, but without all
the details needed for computer code

1/3/05 Introduction - Lecture 1 10

Psuedocode example (good)

• reversePrint(string s)

Create an empty stack A

For each character c in s

Push c onto A

While A is not empty

Pop c from A

Print c

1/3/05 Introduction - Lecture 1 11

Psuedocode example (bad)

• void reversePrint(String s) {

Stack A = new Stack();

for (int i = 0; i < s.length(); i++) {

A.push(s.get(i));

}

While (! A.isEmpty()) {

Print(A.pop());

}

1/3/05 Introduction - Lecture 1 12

Data Structures: What?

• Need to organize program data according to

problem being solved

• Abstract Data Type (ADT) - A data object and a

set of operations for manipulating it
› List ADT with operations insert and delete

› Stack ADT with operations push and pop

• Note similarity to Java classes

› private data structure and public methods

3

1/3/05 Introduction - Lecture 1 13

Data Structures: Why?

• Program design depends crucially on how

data is structured for use by the program

› Implementation of some operations may become
easier or harder

› Speed of program may dramatically decrease or
increase

› Memory used may increase or decrease

› Debugging may be become easier or harder

1/3/05 Introduction - Lecture 1 14

Terminology

• Abstract Data Type (ADT)
› Mathematical description of an object with set of

operations on the object. Useful building block.

• Algorithm
› A high level, language independent, description of

a step-by-step process

• Data structure
› A specific family of algorithms for implementing an

abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

1/3/05 Introduction - Lecture 1 15

Terminology examples

• A stack is an abstract data type
supporting push, pop and isEmpty
operations

• A stack data structure could use an
array, a linked list, or anything that can
hold data

• One stack implementation is found in
java.util.Stack

1/3/05 Introduction - Lecture 1 16

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.

› How well does the algorithm complete its goal

• Performance:
› What is the running time of the algorithm.

› How much storage does it consume.

• Different algorithms may correctly solve a
given task
› Which should I use?

1/3/05 Introduction - Lecture 1 17

Iterative Algorithm for Sum

• Find the sum of the first n integers
stored in an array v.

sum(integer array v, integer n) returns integer

let sum = 0

for i = 1...n

sum = sum + ith number

return sum

Note the use of pseudocode

1/3/05 Introduction - Lecture 1 18

Programming via Recursion

• Write a recursive function to find
the sum of the first n integers
stored in array v.

sum(integer array v, integer n) returns integer

if n = 0 then

sum = 0

else

sum = nth number + sum of first n-1 numbers

return sum

4

1/3/05 Introduction - Lecture 1 19

Proof by Induction

• Basis Step: The algorithm is correct for
a base case or two by inspection.

• Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases.

• Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

1/3/05 Introduction - Lecture 1 20

Program Correctness by
Induction

• Basis Step: sum(v,0) = 0. ����

• Inductive Hypothesis (n=k): Assume

sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1): sum(v,n) returns
v[k]+sum(v,k)= (by inductive hyp.)

v[k]+(v[0]+v[1]+…+v[k-1])=

v[0]+v[1]+…+v[k-1]+v[k] ����

1/3/05 Introduction - Lecture 1 21

Algorithms vs Programs

• Proving correctness of an algorithm is very

important

› a well designed algorithm is guaranteed to work
correctly and its performance can be estimated

• Proving correctness of a program (an
implementation) is fraught with weird bugs

› Abstract Data Types are a way to bridge the gap
between mathematical algorithms and programs

1/3/05 Introduction - Lecture 1 22

Defining Efficiency

• Asymptotic Complexity - how running

time scales as function of size of input

› Order of magnitude notation

› O(n2) is better than O(n3) in the long run

• Why is this a reasonable definition?

› Definition is independent of any possible
advances in computer technology

1/3/05 Introduction - Lecture 1 23

The Apocalyptic Laptop

Seth Lloyd, SCIENCE, 31 Aug 2000

�����
∝ ������ 	
������
�

� � � �
�� ����
� ���������
���

������ ������������������ ����� � π � � �� � ������
� �� !����"#� �
������

�$% & '()*
������
�� ��� ���
��

1/3/05 Introduction - Lecture 1 24

1

100000

1E+10

1E+15

1E+20

1E+25

1E+30

1E+35

1E+40

1E+45

1E+50

1E+55

1E+60

1 10 100 1000

2^N

1.2^N

N 5̂

N 3̂

5N

Asymptotic Scaling

Apocalyptic laptop, 1 year

+,- ./012 3/4 3504

+,- 6 758

Apocalyptic laptop, 1 second

