
1

Binary Heaps

CSE 326

Data Structures

Lecture 11

2/14/05 Binary Heaps - Lecture 11 2

Readings and References

• Reading
› Sections 6.1-6.4

2/14/05 Binary Heaps - Lecture 11 3

Queues

• The Queue ADT: First In First Out (FIFO)

› enqueue(data)

› dequeue() => data

• Queues are everywhere in CS:

› Process scheduling in OS

› Handling requests in servers

› Printer queues

› Event simulation

2/14/05 Binary Heaps - Lecture 11 4

Review: Queue Implementation

• Linked List:

• Circular Array:

2/14/05 Binary Heaps - Lecture 11 5

A New Problem…

• Application: Find the smallest (or
highest priority) item quickly
› Operating system needs to schedule jobs

according to priority

› Doctors in ER take patients according to
severity of injuries

› Event simulation (bank customers arriving
and departing, ordered according to when
the event happened)

2/14/05 Binary Heaps - Lecture 11 6

Priority Queue ADT

• Priority Queue can efficiently do:

› FindMin (and DeleteMin)

› Insert

• What if we use…

› Lists: If sorted, what is the run time for

Insert and FindMin? Unsorted?

› Binary Search Trees: What is the run time

for Insert and FindMin?

2

2/14/05 Binary Heaps - Lecture 11 7

Less flexibility → More speed

• Lists

› If sorted: FindMin is O(1) but Insert is O(N)

› If not sorted: Insert is O(1) but FindMin is O(N)

• Balanced Binary Search Trees (BSTs)

› Insert is O(log N) and FindMin is O(log N)

• BSTs look good but…

› BSTs are efficient for all Finds, not just FindMin

› We only need FindMin

2/14/05 Binary Heaps - Lecture 11 8

Better than a speeding BST

• We can do better than Balanced Binary
Search Trees?
› Very limited requirements: Insert, FindMin,

DeleteMin

› FindMin is O(1)

› Insert is O(log N)

› DeleteMin is O(log N)

• + uses arrays, given better _____ locality

2/14/05 Binary Heaps - Lecture 11 9

Binary Heaps

• A binary heap is a binary tree that is:

› Complete: the tree is completely filled except
possibly the bottom level, which is filled from left to
right

› Satisfies the heap order property

• every node is less than or equal to its children

• or every node is greater than or equal to its children

• The root node is always the smallest node

› or the largest, depending on the heap order

2/14/05 Binary Heaps - Lecture 11 10

Heap order property

• A heap provides limited ordering information

• Each path is sorted, but the subtrees are not
sorted relative to each other

› A binary heap is NOT a binary search tree

2

4 6

7 5

-1

0 1

0

1

2 6

8 4 7
These are all valid binary heaps (minimum)

2/14/05 Binary Heaps - Lecture 11 11

Binary Heap vs Binary Search
Tree

94

10 97

5 24

5

10 94

97 24

Binary Heap Binary Search Tree

Parent is greater than left
child, less than right child

Parent is less than both
left and right children

min

value

min value

2/14/05 Binary Heaps - Lecture 11 12

Structure property

• A binary heap is a complete tree

› All nodes are in use except for possibly the
right end of the bottom row

3

2/14/05 Binary Heaps - Lecture 11 13

Examples

2

64

57

2

64

5

6

24

2

65

47

2/14/05 Binary Heaps - Lecture 11 14

Array Implementation of
Heaps (Implicit Pointers)

• Root node = A[1]

• Children of A[i] = A[2i], A[2i + 1]

• Keep track of current size N (number
of nodes)

N = 5

value

index

2

64

57

- 2 4 6 7 5

0 1 2 3 4 5 6 7

1

54

32

2/14/05 Binary Heaps - Lecture 11 15

FindMin and DeleteMin

• FindMin: Easy!

› Return root value A[1]

› Run time = ?

• DeleteMin:

› Delete (and return) value
at root node

2

34

9857

106911

2/14/05 Binary Heaps - Lecture 11 16

DeleteMin

34

9857

106911

• Delete (and return)

value at root node

2/14/05 Binary Heaps - Lecture 11 17

Maintain the Structure
Property

• We now have a “Hole” at

the root

› Need to fill the hole with
another value

• When we get done, the

tree will have one less
node and must still be

complete

34

9857

106911

34

9857

106911
2/14/05 Binary Heaps - Lecture 11 18

Maintain the Heap Property

• The last value has lost its

node

› we need to find a new
place for it

• We can do a simple

insertion sort operation to
find the correct place for

it in the tree

34

9857

10

6911

4

2/14/05 Binary Heaps - Lecture 11 19

DeleteMin: Percolate Down

• Keep comparing with children A[2i] and A[2i + 1]
• Copy smaller child up and go down one level

• Done if both children are ≥ item or reached a leaf node
• What is the run time?

34

9857

10

6911

4

9857

10

6911

3

84

91057

6911

3

?

?

2/14/05 Binary Heaps - Lecture 11 20

Percolate Down

PercDown(i:integer, x :integer): {

// N is the number of entries in queue//

j : integer;

Case{

2i > N : A[i] := x; //at bottom//

2i = N : if A[2i] < x then

A[i] := A[2i]; A[2i] := x;

else A[i] := x;

2i < N : if A[2i] < A[2i+1] then j := 2i;

else j := 2i+1;

if A[j] < x then

A[i] := A[j]; PercDown(j,x);

else A[i] := x;

}}

2/14/05 Binary Heaps - Lecture 11 21

DeleteMin: Run Time Analysis

• Run time is O(depth of heap)

• A heap is a complete binary tree

• Depth of a complete binary tree of N
nodes?

› height = �log2(N) � - 1

• Run time of DeleteMin is O(log N)

2/14/05 Binary Heaps - Lecture 11 22

Insert

• Add a value to the tree

• Structure and heap

order properties must

still be correct when we
are done

84

91057

6911

3

2

2/14/05 Binary Heaps - Lecture 11 23

Maintain the Structure
Property

• The only valid place for

a new node in a
complete tree is at the

end of the array

• We need to decide on

the correct value for the
new node, and adjust

the heap accordingly

84

91057

6911

3

2

2/14/05 Binary Heaps - Lecture 11 24

Maintain the Heap Property

• The new value goes where?

• We can do a simple insertion

sort operation to find the

correct place for it in the tree

2

84

91057

6911

3

5

2/14/05 Binary Heaps - Lecture 11 25

Insert: Percolate Up

2

84

91057

6911

3

• Start at last node and keep comparing with parent A[i/2]
• If parent larger, copy parent down and go up one level
• Done if parent ≤ item or reached top node A[1]
• Run time?

?

2
5

84

9107

6911

3

?

2

5

8

91047

6911

3?

2/14/05 Binary Heaps - Lecture 11 26

Insert: Done

5

83

91047

6911

2

• Run time?

2/14/05 Binary Heaps - Lecture 11 27

PercUp

• Class participation

• Define PercUp which percolates new entry to
correct spot.

• Note: the parent of i is i/2

PercUp(i : integer, x : integer): {

????

}

2/14/05 Binary Heaps - Lecture 11 28

Quiz

• Say we want to add decreaseKey(i, x).

We do “A[i] = A[i]-x;” followed by?

• What about increaseKey(i, x)?

2/14/05 Binary Heaps - Lecture 11 29

Sentinel Values

• Every iteration of Insert needs to test:
› if it has reached the top node A[1]

› if parent ≤ item

• Can avoid first test if A[0] contains a very
large negative value

› sentinel -∞ < item, for all items

• Second test alone always stops at top

-∞

5

83

91047

6911

2

value

index

-∞ 2 3 8 7 4 10 9

0 1 2 3 4 5 6 7

11 9 6 5

8 9 10 11 12 13

2/14/05 Binary Heaps - Lecture 11 30

Binary Heap Analysis

• Space needed for heap of N nodes: O(MaxN)

› An array of size MaxN, plus a variable to store the
size N, plus an array slot to hold the sentinel

• Time

› FindMin: O(1)

› DeleteMin and Insert: O(log N)

› BuildHeap from N inputs : O(N)

6

2/14/05 Binary Heaps - Lecture 11 31

Average Case Analysis

• Question: At what height do we expect to find
median element?

• Formally, this gives expected _______ moves
for insert.

• Question: How far does last element need to
be percolated down?

• This gives expected _______ moves for
delete

2/14/05 Binary Heaps - Lecture 11 32

Build Heap

• Doing N inserts takes expected time

O(N), but worst-case time O(NlogN).

• We can do it in guaranteed O(N) time if

we’re clever.

• Idea is to treat input array as a broken
heap and fix it with percolateDown

2/14/05 Binary Heaps - Lecture 11 33

Build Heap

BuildHeap {

for i = N/2 to 1 by –1 PercDown(i,A[i])

}

3

105

9849

672

11
N=11

4

105

9839

672

11

1

4

32

5 6 7

11
109

8

2/14/05 Binary Heaps - Lecture 11 34

Build Heap

4

105

9832

679

11

4

85

91032

679

11

2/14/05 Binary Heaps - Lecture 11 35

Build Heap

4

82

91035

679

11

11

83

91045

679

2

2/14/05 Binary Heaps - Lecture 11 36

Analysis of Build Heap

• Assume N = 2K –1
› Level 1: k -1 steps for 1 item

› Level 2: k - 2 steps of 2 items

› Level 3: k - 3 steps for 4 items

› Level i : k - i steps for 2i-1 items

O(N)

1-k2)2 ik (Steps Total k1i
1k

1i

=

−=−=
−

−

=

�

7

2/14/05 Binary Heaps - Lecture 11 37

Other Heap Operations

• Find(X, H): Find the element X in heap H of N

elements

› Heap is somewhat ordered, so maybe we can be
smarter than a linear search?

› What is the running time?

• FindMax(H): Find the maximum element in H

› What is the running time?

› We sacrificed performance of these operations in
order to get O(1) performance for FindMin

2/14/05 Binary Heaps - Lecture 11 38

Other Heap Operations

• Delete(P,H): E.g. Delete a job waiting in
queue that has been preemptively

terminated by user

› Use DecreaseKey(P,∞,H) followed by
DeleteMin

› Running Time: O(log N)

2/14/05 Binary Heaps - Lecture 11 39

Other Heap Operations

• DecreaseKey(P,∆,H): Decrease the key
value of node at position P by a positive

amount ∆. eg, to increase priority

› First, subtract ∆ from current value at P

› Heap order property may be violated

› so percolate up to fix

› Running Time: O(log N)

2/14/05 Binary Heaps - Lecture 11 40

Other Heap Operations

• IncreaseKey(P,∆,H): Increase the key
value of node at position P by a positive

amount ∆. eg, to decrease priority

› First, add ∆ to current value at P

› Heap order property may be violated

› so percolate down to fix

› Running Time: O(log N)

2/14/05 Binary Heaps - Lecture 11 41

Other Heap Operations

• Merge(H1,H2): Merge two heaps H1 and

H2 of size O(N). H1 and H2 are stored in
two arrays.

› Can do O(N) Insert operations: O(N log N)
time

› Better: Copy H2 at the end of H1 and use
BuildHeap. Running Time: O(N)

2/14/05 Binary Heaps - Lecture 11 42

One last question

• Pointer based trees could grow

indefinitely. Array based tree has to be
copied (O(N) runtime) to a larger array

when space runs out.

• Does this affect our asymptotic runtime?

8

2/14/05 Binary Heaps - Lecture 11 43

PercUp Solution

PercUp(i : integer, x : integer): {

if i = 1 then A[1] := x

else if A[i/2] < x then

A[i] := x;

else

A[i] := A[i/2];

Percup(i/2,x);

}

