Hashing

CSE 326
Data Structures
Lecture 14

Readings and References

- Reading
 - Chapter 5

2/28/05 Lecture 14 - Hashing

Hashing

- Hashing is a family of data structures used to efficiently support insert, delete, find.
- It cannot be used efficiently for other operations where the order of data is important. No list-all, range queries, successor, predecessor.

2/28/05 Lecture 14 - Hashing 3

General Idea

- Key space of size M, but we only want to store subset of size N, where N<<M.
 - Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
 - Keys are student names. We want to look up student records quickly by name.
 - Keys are chess configurations in a chess playing program.
 - Keys are URLs in a database of web pages.

2/28/05 Lecture 14 - Hashing

Simple Hash Table

Hash function:

 $h:U\to \{\ 0,1,...,Hsize\ \text{-}1\}$

U is the universe of keys

h("name") is the hash value of "name"

h(Judy Jones) = 4 h(Jerry Lee) = 7

Find("name") = T[h("name")]

2/28/05 Lecture 14 - Hashing 5

Hashing Properties

- Load Factor = $\lambda = \frac{N}{\text{HSize}}$
 - Hash tables may have unused entries λ < 1
- Good quality hash function distribute data as evenly as possible over the keys.
- Collisions: h(inserted key) = h(existing key).
 - Open hashing linked lists
 - Closed hashing find a new place to put inserted key

Good Hash Functions

- · Integers: Division method
 - Choose Hsize to be a prime h(n) = n mod Hsize
 - Example. Hsize = 23, h(50) = 4, h(1257) = 15
- · Character Strings
 - x = $a_0a_1a_2...a_m$ is a character string. Define int(x) = $a_0+a_1128+a_2128^2+...+a_m128^{m-1}$ h(x) = int(x) mod Hsize
 - Compute h(x) using Horner's Rule h := 0

for i = m to 0 by -1 do $h := (a_i + 128h) \mod Hsize$ return h

10101111

2/28/05 Lecture 14 - Hashing

A Bad Hash Function

- · Keys able1, able2, able3, able4
 - Hsize = 128 int(ablex) mod 128 = int(a) = 97 Thus, h(ablex) =h(abley) for all x and y
- Why use primes for hash table sizes?
 - Primes have no nontrivial divisors
 - Numbers relatively prime to 128 will also work for character strings

2/28/05 Lecture 14 - Hashing

Multiplication Method

- Hash function defined by HSize and a floating point number A.
 - Integer case
 - $-h(k) = \lfloor HSize * (k*A mod 1) \rfloor$
 - Example: HSize = 10, A = .485 $h(50) = \lfloor 10 * (50*.485 \mod 1) \rfloor$ $= \lfloor 10*(24.25 \mod 1) \rfloor$ $= \lfloor 10*.25 \rfloor$
 - = 2
 - + HSize need not be prime
 - More computation than division method
- · Another alternative Universal Hashing

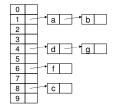
2/28/05 Lecture 14 - Hashing

What about Collisions?

- Open Hashing Collisions overflow into linked lists.
 - Load factors > 1 are possible
- Closed Hashing if a collision occurs find another place in the hash table for the entry.
 - Load factor must be < 1

2/28/05 Lecture 14 - Hashing 10

Open Hashing (Chaining)



- h(a) = h(b) and h(d) = h(g)
- Chains may be ordered or unordered. Little advantage to ordering.

2/28/05 Lecture 14 - Hashing 11

Open Hashing Properties

- Load factor = λ
 - Unsuccessful searches cost $\boldsymbol{\lambda}$ comparisons on average
 - Successful searches cost 1 + $\lambda/2$ comparisons on average
- Comparisons can be expensive so choosing λ between 1/2 and 1 is wise.

Closed Hashing (Open Addressing)

- · No chaining, every key fits in the hash table.
- · Probe sequence
 - -h(k)
 - ($\dot{h}(\dot{k})$ + f(1)) mod HSize
 - (h(k) + f(2)) mod HSize , ...
- Insertion: Find the first probe with an empty slot.
- Find: Find the first probe that equals the query or is empty. Stop at HSize probe, in any case.
- Deletion: lazy deletion is needed. That is, mark locations as deleted, if a deleted key resides

Lecture 14 - Hashing

Linear Probing

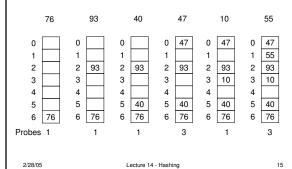
- f(i) = i
- · Probe sequence

h(k) $(h(k) + 1) \mod HSize$ $(h(k) + 2) \mod HSize ...$

• Insertion (assuming $\lambda < 1$)

Lecture 14 - Hashing

Linear Probing Example



2/28/05 Lecture 14 - Hashing

Performance of Linear Probing

14

16

- · If there is an available slot linear probing will find it.
- For large hash tables the expected number of probes on insertion is:

 $\left(1+\frac{1}{(1-\lambda)^2}\right)$

The expected number of probes on successful searches is:

 $\frac{1}{2}\left(1+\frac{1}{1-\lambda}\right)$

- · Linear probing suffers from primary clustering.
- Not a good idea to use linear probing with $\lambda > \frac{1}{2}$.
- Lazy deletion needed.

Lecture 14 - Hashing

Linear Probing - Clustering

Quadratic Probing

- $f(i) = i^2$
- Probe sequence

h(k) (h(k) + 1) mod HSize (h(k) + 4) mod HSize

(h(k) + 9) mod HSize, ...Insertion (assuming $\lambda < 1/2$)

i := 0; while T(h) not empty do { h := (h + 2*i + 1) mod HSize; i := i + 1 } insert k in T(h)

Note: $(i + 1)^2 - i^2 = 2i + 1$

Lecture 14 - Hashing 18

Quadratic Probing Works for $\lambda < 1/2$

- If HSize is prime then (h(x) + i²) mod HSize ≠ (h(x) + j²) mod HSize for i ≠ j and 0 ≤ i,j < HSize/2.
- Proof

```
\begin{split} &(h(x)+i^2) \text{ mod HSize} = (h(x)+j^2) \text{ mod HSize} \\ &(h(x)+i^2) - (h(x)+j^2) \text{ mod HSize} = 0 \\ &(i^2-j^2) \text{ mod HSize} = 0 \\ &(i\text{-}j)(i\text{+}j) \text{ mod HSize} = 0 \\ &\Rightarrow \leftarrow \text{HSize does not divide (i-j) or (i+j)} \end{split}
```

19

/28/05 Lecture 14 - Hashing

```
Quadratic Probing may Fail if \lambda \ge 1/2
                    51 \mod 7 = 2; i = 0
    51
                    (2 + 1) \mod 7 = 3; i = 1
 0
                    (3 + 3) \mod 7 = 6; i = 2
 1
                    (6 + 5) \mod 7 = 4; i = 3
 2
    16
                    (4 + 7) \mod 7 = 4; i = 4
 3
    45
    59
 4
                    (4 + 9) \mod 7 = 6; i = 5
                    (6 + 11) \mod 7 = 3; i = 6
 6
    76
                    (3 + 13) \mod 7 = 2, i = 7
                      Lecture 14 - Hashing
2/28/05
                                                      20
```

Performance of Quadratic Probing

- Although quadratic probing can fail for λ ≥ ½, it is not likely to do so. We can use load factors greater than ½, but load factors close to 1 should be avoided.
- Quadratic hashing does not suffer from primary clustering, but has only minor secondary clustering.
- With load factors near ½ the expected number of probes per successful search is about 1.5.
- · Lazy deletion must be used.

2/28/05 Lecture 14 - Hashing 2

Double Hashing

- f(i) = i g(k) where g is a second hash function
- · Probe sequence

h(k)

 $(h(k) + g(k)) \mod HSize$

 $(h(k) + 2g(k)) \mod HSize$

 $(h(k) + 3g(k)) \mod HSize, ...$

- In choosing g care must be taken so that it never evaluates to 0.
- A good choice for gis to choose a prime R <
 HSize and let g(k) = R (k mod R).

2/28/05 Lecture 14 - Hashing 22

Double Hashing Example $h(k) = k \mod 7$ and $g(k) = 5 - (k \mod 5)$ 10 76 93 55 0 0 0 0 0 47 47 1 47 1 1 1 1 2 2 93 2 93 2 93 2 93 2 93 3 3 3 3 3 10 10 3 4 4 4 55 4 5 5 40 5 40 5 40 5 40 5 6 76 6 76 6 76 6 76 76 76 Probes 1 2 2/28/05 Lecture 14 - Hashing

Double Hashing is Safe for $\lambda < 1$

Let $h(k) = k \mod p$ and $g(k) = q - (k \mod q)$ where 2 < q < p and p and q are primes. The probe sequence $h(k) + ig(k) \mod p$ probes every entry of the hash table.

Let $0 \le m < p$, h = h(k), and g = g(k). We show that h+ig mod p = m for some i. 0 < g < p, so g and p are relatively prime. By extended Euclid's algorithm that are s and t such that

sg + tp = 1. Choose $i = (m-h)s \mod p$

 $(h + ig) \mod p =$

 $(h + (m-h)sg) \mod p =$

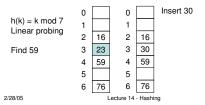
 $(h + (m-h)sg + (m-h)tp) \mod p =$

 $(h + (m-h)(sg + tp) \mod p =$

 $(h + (m-h)) \mod p = m \mod p = m$

Deletion in Hashing

- Open hashing (chaining) no problem
- Closed hashing must do lazy deletion. Deleted keys are marked as deleted.
 - Find: done normally
 - Insert: treat marked slot as an empty slot and fill it.



Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 - Go through old hash table, ignoring items marked deleted
 - Recompute hash value for each non-deleted key and put the item in new position in new table
 - Cannot just copy data from old table because the bigger table has a new hash function
- · Running time is O(N) but happens very infrequently
 - Not good for real-time safety critical applications

2/28/05 Lecture 14 - Hashing 26

Rehashing Example

25

• Open hashing $-h_1(x) = x \mod 5$ rehashes to $h_2(x) = x \mod 11$.

$$n_2(x) = x \mod 11.$$

$$\lambda = 1 \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4$$

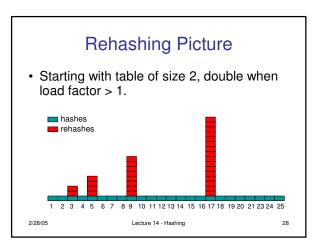
$$25 \qquad 37 \quad 83$$

$$52 \quad 98$$

$$\lambda = 5/11 \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9 \qquad 10$$

$$25 \quad 37 \quad 83 \qquad 52 \qquad 98$$

$$2/28/05 \qquad \qquad \text{Lecture } 14 \cdot \text{Hashing} \qquad 27$$



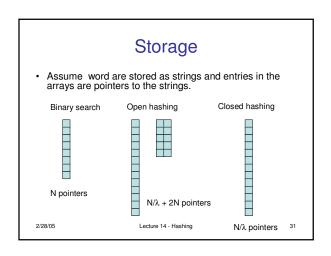
Amortized Analysis of Rehashing

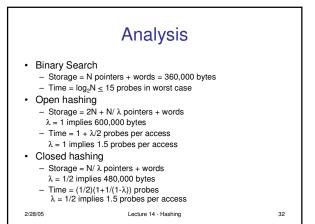
- Cost of inserting n keys is < 3n
- $2^k + 1 \le n \le 2^{k+1}$
 - Hashes = n
 - Rehashes = 2 + 2^2 + ... + 2^k = 2^{k+1} 2
 - $-\text{Total} = n + 2^{k+1} 2 < 3n$
- Example
 - -n = 33, Total = 33 + 64 2 = 95 < 99

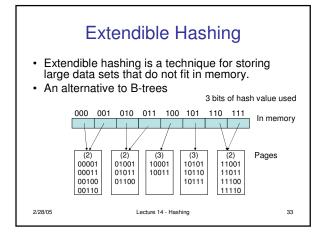
2/28/05 Lecture 14 - Hashing 29

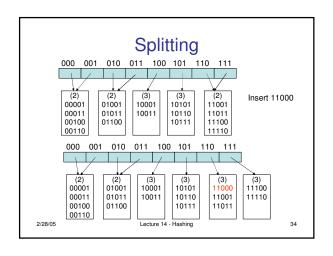
Case Study

- · Spelling Dictionary 30,000 words
- Goals
 - Fast spell checking
- Minimal storage
- Possible solutions
 - Sorted array and binary search
 - Open hashing (chaining)
 - Closed hashing with linear probing
- Notes
 - Almost all searches are successful
 - 30,000 word average 8 bytes per word, 240,000 bytes
 - Pointers are 4 bytes











Analysis of Extendible Hashing

- · On deletion neighbors can be merged.
- If table uses k bits but all pages use k-1 bits then rehashing to a smaller table can be done. Not normally an issue with large databases.
- · Rehashing does not touch pages.
- Splitting and merging touch only two pages.

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.
- Extendible hashing is useful in databases.

2/28/05

Lecture 14 - Hashing

07