
1

Hashing

CSE 326

Data Structures

Lecture 14

2/28/05 Lecture 14 - Hashing 2

Readings and References

• Reading
– Chapter 5

2/28/05 Lecture 14 - Hashing 3

Hashing

• Hashing is a family of data structures used

to efficiently support insert, delete, find.

• It cannot be used efficently for other

operations where the order of data is
important. No list-all, range queries,

successor, predecessor.

2/28/05 Lecture 14 - Hashing 4

General Idea

• Key space of size M, but we only want to

store subset of size N, where N<<M.

– Keys are identifiers in programs. Compiler
keeps track of them in a symbol table.

– Keys are student names. We want to look up
student records quickly by name.

– Keys are chess configurations in a chess
playing program.

– Keys are URLs in a database of web pages.

2/28/05 Lecture 14 - Hashing 5

Simple Hash Table

Hash function:

h : U → { 0,1,…,Hsize -1}

U is the universe of keys

h(“name”) is the hash value of “name”

h(Judy Jones) = 4

h(Jerry Lee) = 7

Find(“name”) = T[h(“name”)]

0

1

2

3

4

5

6

7

8

9

John Smith

Judy Jones

Martha Lee

Jerry Lee

T

2/28/05 Lecture 14 - Hashing 6

Hashing Properties

•

– Hash tables may have unused entries λ < 1

• Good quality hash function distribute data as
evenly as possible over the keys.

• Collisions: h(inserted key) = h(existing key).

– Open hashing - linked lists

– Closed hashing - find a new place to put inserted
key

HSize

N
 � Factor Load ==

2

2/28/05 Lecture 14 - Hashing 7

Good Hash Functions

• Integers: Division method
– Choose Hsize to be a prime

h(n) = n mod Hsize

– Example. Hsize = 23, h(50) = 4, h(1257) = 15

• Character Strings
– x = a0a1a2…am is a character string. Define int(x) =

a0+a1128 + a21282 +… +am128m-1

h(x) = int(x) mod Hsize

– Compute h(x) using Horner’s Rule
h :=0

for i = m to 0 by -1 do h := (ai +128h) mod Hsize

return h

2/28/05 Lecture 14 - Hashing 8

A Bad Hash Function

• Keys able1, able2, able3, able4
– Hsize = 128

int(ablex) mod 128 = int(a) = 97

Thus, h(ablex) =h(abley) for all x and y

• Why use primes for hash table sizes?
– Primes have no nontrivial divisors

– Numbers relatively prime to 128 will also work for
character strings

2/28/05 Lecture 14 - Hashing 9

Multiplication Method

• Hash function defined by HSize and a floating
point number A.
– Integer case

– h(k) = �HSize * (k*A mod 1)�

– Example: HSize = 10, A = .485
h(50) = �10 * (50*.485 mod 1)�

= �10*(24.25 mod 1)�
= �10*.25�
= 2

+ HSize need not be prime
- More computation than division method

• Another alternative – Universal Hashing

2/28/05 Lecture 14 - Hashing 10

What about Collisions?

• Open Hashing - Collisions overflow into

linked lists.

– Load factors > 1 are possible

• Closed Hashing - if a collision occurs find
another place in the hash table for the

entry.

– Load factor must be < 1

2/28/05 Lecture 14 - Hashing 11

Open Hashing (Chaining)

0

1

2

3

4

5

6

7

8

9

a b

d g

c

f

• h(a) = h(b) and h(d) = h(g)

• Chains may be ordered or
unordered. Little advantage
to ordering.

2/28/05 Lecture 14 - Hashing 12

Open Hashing Properties

• Load factor = λ

– Unsuccessful searches cost λ comparisons
on average

– Successful searches cost 1 + λ/2
comparisons on average

• Comparisons can be expensive so

choosing λ between 1/2 and 1 is wise.

3

2/28/05 Lecture 14 - Hashing 13

Closed Hashing (Open Addressing)

• No chaining, every key fits in the hash table.
• Probe sequence

– h(k)
– (h(k) + f(1)) mod HSize
– (h(k) + f(2)) mod HSize , …

• Insertion: Find the first probe with an empty slot.
• Find: Find the first probe that equals the query

or is empty. Stop at HSize probe, in any case.

• Deletion: lazy deletion is needed. That is, mark
locations as deleted, if a deleted key resides
there.

2/28/05 Lecture 14 - Hashing 14

Linear Probing

• f(i) = i

• Probe sequence
h(k)
(h(k) + 1) mod HSize
(h(k) + 2) mod HSize …

• Insertion (assuming λ < 1)
h := h(k)

while T(h) not empty do

h := (h + 1) mod HSize;

insert k in T(h)

2/28/05 Lecture 14 - Hashing 15

Linear Probing Example

0

1

2

3

4

5

6 76

76

0

1

2

3

4

5

6

93

76

93

0

1

2

3

4

5

6

93

40

76

40

0

1

2

3

4

5

6

47

93

40

76

47

0

1

2

3

4

5

6

47

93

10

40

76

10

0

1

2

3

4

5

6

47

55

93

10

40

76

55

Probes 1 1 1 3 1 3

2/28/05 Lecture 14 - Hashing 16

Performance of Linear Probing

• If there is an available slot linear probing will find it.
• For large hash tables the expected number of probes

on insertion is:

• The expected number of probes on successful
searches is:

• Linear probing suffers from primary clustering.
• Not a good idea to use linear probing with λ > ½.
• Lazy deletion needed.

��
�

�
��
�

�

−
+

2)1(

1
1

2

1

λ

�
�

�
�
�

�

−
+

λ1

1
1

2

1

2/28/05 Lecture 14 - Hashing 17

Linear Probing – Clustering

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster

2/28/05 Lecture 14 - Hashing 18

Quadratic Probing

• f(i) = i2

• Probe sequence
h(k)
(h(k) + 1) mod HSize
(h(k) + 4) mod HSize
(h(k) + 9) mod HSize, …

• Insertion (assuming λ < 1/2)
h := h(k);

i := 0;
while T(h) not empty do {

h := (h + 2*i + 1) mod HSize;

i := i + 1 }

insert k in T(h)

Note: (i +1)2 – i2 = 2i + 1

4

2/28/05 Lecture 14 - Hashing 19

Quadratic Probing Works for λ < 1/2

• If HSize is prime then (h(x) + i2) mod
HSize ≠ (h(x) + j2) mod HSize for i ≠ j and
0 < i,j < HSize/2.

• Proof
(h(x) + i2) mod HSize = (h(x) + j2) mod HSize

(h(x) + i2) - (h(x) + j2) mod HSize = 0

(i2 - j2) mod HSize = 0

(i-j)(i+j) mod HSize = 0

	⇐ HSize does not divide (i-j) or (i+j)

2/28/05 Lecture 14 - Hashing 20

Quadratic Probing may Fail if λ > 1/2

51 mod 7 = 2 ; i = 0

(2 + 1) mod 7 = 3; i = 1

(3 + 3) mod 7 = 6; i = 2

(6 + 5) mod 7 = 4; i = 3

(4 + 7) mod 7 = 4; i = 4

(4 + 9) mod 7 = 6; i = 5

(6 + 11) mod 7 = 3; i = 6

(3 + 13) mod 7 = 2, i = 7

…

0

1

2

3

4

5

6

16

45

59

76

51

2/28/05 Lecture 14 - Hashing 21

Performance of Quadratic Probing

• Although quadratic probing can fail for λ > ½, it
is not likely to do so. We can use load factors
greater than ½, but load factors close to 1
should be avoided.

• Quadratic hashing does not suffer from primary
clustering, but has only minor secondary
clustering.

• With load factors near ½ the expected number of
probes per successful search is about 1.5.

• Lazy deletion must be used.

2/28/05 Lecture 14 - Hashing 22

Double Hashing

• f(i) = i g(k) where g is a second hash function

• Probe sequence

h(k)
(h(k) + g(k)) mod HSize
(h(k) + 2g(k)) mod HSize

(h(k) + 3g(k)) mod HSize, …

• In choosing g care must be taken so that it

never evaluates to 0.

• A good choice for gis to choose a prime R <

HSize and let g(k) = R – (k mod R).

2/28/05 Lecture 14 - Hashing 23

Double Hashing Example

0

1

2

3

4

5

6 76

76

0

1

2

3

4

5

6

93

76

93

0

1

2

3

4

5

6

93

40

76

40

0

1

2

3

4

5

6

47

93

40

76

47

0

1

2

3

4

5

6

47

93

10

40

76

10

0

1

2

3

4

5

6

47

93

10

55

40

76

55

h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes 1 1 1 2 1 2

2/28/05 Lecture 14 - Hashing 24

Double Hashing is Safe for λ < 1

• Let h(k) = k mod p and g(k) = q – (k mod q) where 2 < q
< p and p and q are primes. The probe sequence h(k) +
ig(k) mod p probes every entry of the hash table.

Let 0 < m < p, h = h(k), and g = g(k). We show that h+ig mod p =
m for some i. 0 < g < p, so g and p are relatively prime. By
extended Euclid’s algorithm that are s and t such that

sg + tp = 1. Choose i = (m-h)s mod p

(h + ig) mod p =

(h + (m-h)sg) mod p =

(h + (m-h)sg + (m-h)tp) mod p =

(h + (m-h)(sg + tp) mod p =

(h + (m-h)) mod p = m mod p = m

5

2/28/05 Lecture 14 - Hashing 25

Deletion in Hashing

• Open hashing (chaining) – no problem
• Closed hashing – must do lazy deletion. Deleted keys

are marked as deleted.
– Find: done normally

– Insert: treat marked slot as an empty slot and fill it.

0

1

2

3

4

5

6

16

23

59

76

0

1

2

3

4

5

6

16

30

59

76

h(k) = k mod 7

Linear probing

Find 59

Insert 30

2/28/05 Lecture 14 - Hashing 26

Rehashing

• Build a bigger hash table of approximately twice the size

when λ exceeds a particular value

– Go through old hash table, ignoring items marked
deleted

– Recompute hash value for each non-deleted key and
put the item in new position in new table

– Cannot just copy data from old table because the
bigger table has a new hash function

• Running time is O(N) but happens very infrequently

– Not good for real-time safety critical applications

2/28/05 Lecture 14 - Hashing 27

Rehashing Example

• Open hashing – h1(x) = x mod 5 rehashes to
h2(x) = x mod 11.

0 1 2 3 4

25 37 83

52 98

λ = 1

0 1 2 3 4 5 6 7 8 9 10

25 37 83 52 98
λ = 5/11

2/28/05 Lecture 14 - Hashing 28

Rehashing Picture

• Starting with table of size 2, double when
load factor > 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25

hashes
rehashes

2/28/05 Lecture 14 - Hashing 29

Amortized Analysis of
Rehashing

• Cost of inserting n keys is < 3n

• 2k + 1 < n < 2k+1

– Hashes = n

– Rehashes = 2 + 22 + … + 2k = 2k+1 – 2

– Total = n + 2k+1 – 2 < 3n

• Example

– n = 33, Total = 33 + 64 –2 = 95 < 99

2/28/05 Lecture 14 - Hashing 30

Case Study

• Spelling Dictionary - 30,000 words

• Goals
– Fast spell checking

– Minimal storage

• Possible solutions
– Sorted array and binary search

– Open hashing (chaining)

– Closed hashing with linear probing

• Notes
– Almost all searches are successful

– 30,000 word average 8 bytes per word, 240,000 bytes

– Pointers are 4 bytes

6

2/28/05 Lecture 14 - Hashing 31

Storage

• Assume word are stored as strings and entries in the
arrays are pointers to the strings.

Binary search Open hashing Closed hashing

N pointers
N/λ + 2N pointers

N/λ pointers 2/28/05 Lecture 14 - Hashing 32

Analysis

• Binary Search
– Storage = N pointers + words = 360,000 bytes

– Time = log2N < 15 probes in worst case

• Open hashing
– Storage = 2N + N/ λ pointers + words

λ = 1 implies 600,000 bytes

– Time = 1 + λ/2 probes per access

λ = 1 implies 1.5 probes per access

• Closed hashing
– Storage = N/ λ pointers + words

λ = 1/2 implies 480,000 bytes

– Time = (1/2)(1+1/(1-λ)) probes
λ = 1/2 implies 1.5 probes per access

2/28/05 Lecture 14 - Hashing 33

Extendible Hashing

• Extendible hashing is a technique for storing
large data sets that do not fit in memory.

• An alternative to B-trees

000 001 010 011 100 101 110 111

3 bits of hash value used

(2)

00001
00011

00100

00110

(3)

10001
10011

(3)

10101
10110

10111

(2)

11001
11011

11100

11110

(2)

01001
01011

01100

Pages

In memory

2/28/05 Lecture 14 - Hashing 34

Splitting
000 001 010 011 100 101 110 111

(2)
00001

00011
00100

00110

(3)
10001

10011

(3)
10101

10110
10111

(2)
11001

11011
11100

11110

(2)
01001

01011
01100

Insert 11000

000 001 010 011 100 101 110 111

(2)

00001
00011

00100

00110

(3)

10001
10011

(3)

10101
10110

10111

(3)

11000
11001

11011

(2)

01001
01011

01100

(3)

11100
11110

2/28/05 Lecture 14 - Hashing 35

Rehashing

(2)
00001

00011
00100

00110

(2)
10000

10001
10011

(2)
01001

01011
01100

(2)
11101

11110

00 01 10 11
Insert 00111

000 001 010 011 100 101 110 111

(3)

00100
00110

00111

(2)

10000
10001

10011

(2)

01001
01011

01100

(2)

11101
11110

(3)

00001
00011

2/28/05 Lecture 14 - Hashing 36

Analysis of Extendible Hashing

• On deletion neighbors can be merged.

• If table uses k bits but all pages use k-1

bits then rehashing to a smaller table can

be done. Not normally an issue with large
databases.

• Rehashing does not touch pages.

• Splitting and merging touch only two

pages.

7

2/28/05 Lecture 14 - Hashing 37

Hashing Summary

• Hashing is one of the most important data

structures.

• Hashing has many applications where

operations are limited to find, insert, and
delete.

• Dynamic hash tables have good amortized

complexity.

• Extendible hashing is useful in databases.

