
1

Hashing

CSE 326 

Data Structures

Lecture 14
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Readings and References

• Reading 
– Chapter 5
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Hashing

• Hashing is a family of data structures used 

to efficiently support insert, delete, find.

• It cannot be used efficently for other 

operations where the order of data is 
important. No list-all, range queries, 

successor, predecessor.
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General Idea

• Key space of size M, but we only want to 

store subset of size N, where N<<M.

– Keys are identifiers in programs. Compiler 
keeps track of them in a symbol table.

– Keys are student names.  We want to look up 
student records quickly by name.

– Keys are chess configurations in a chess 
playing program.

– Keys are URLs in a database of web pages.
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Simple Hash Table

Hash function:

h : U → { 0,1,…,Hsize -1}

U is the universe of keys

h(“name”) is the hash value of “name”

h(Judy Jones) = 4

h(Jerry Lee) = 7

Find(“name”) = T[h(“name”)]
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Hashing Properties

•

– Hash tables may have unused entries λ < 1

• Good quality hash function distribute data as 
evenly as possible over the keys.

• Collisions: h(inserted key) = h(existing key).

– Open hashing - linked lists

– Closed hashing - find a new place to put inserted 
key

HSize

N
  �  Factor Load ==
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Good Hash Functions

• Integers: Division method
– Choose Hsize to be a prime 

h(n) = n mod Hsize

– Example. Hsize = 23, h(50) = 4, h(1257) = 15

• Character Strings
– x = a0a1a2…am is a character string. Define int(x) = 

a0+a1128 + a21282 +… +am128m-1

h(x) = int(x) mod Hsize

– Compute h(x) using Horner’s Rule
h :=0

for i = m to 0 by -1 do h := (ai +128h) mod Hsize

return h
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A Bad Hash Function

• Keys able1, able2, able3, able4
– Hsize = 128

int(ablex) mod 128 = int(a) = 97

Thus, h(ablex) =h(abley) for all x and y

• Why use primes for hash table sizes?
– Primes have no nontrivial divisors 

– Numbers relatively prime to 128 will also work for 
character strings
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Multiplication Method

• Hash function defined by HSize and a floating 
point number A.
– Integer case

– h(k) = �HSize * (k*A mod 1)�

– Example: HSize = 10, A = .485
h(50) = �10 * (50*.485 mod 1)�

= �10*(24.25 mod 1)�
= �10*.25�
= 2

+ HSize need not be prime
- More computation than division method

• Another alternative – Universal Hashing
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What about Collisions?

• Open Hashing - Collisions overflow into 

linked lists.

– Load factors > 1 are possible

• Closed Hashing - if a collision occurs find 
another place in the hash table for the 

entry.

– Load factor must be < 1
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Open Hashing (Chaining)
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• h(a) = h(b) and h(d) = h(g)

• Chains may be ordered or
unordered.  Little advantage
to ordering.
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Open Hashing Properties

• Load factor = λ

– Unsuccessful searches cost λ comparisons 
on average

– Successful searches cost 1 + λ/2 
comparisons on average

• Comparisons can be expensive so 

choosing λ between 1/2 and 1 is wise.
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Closed Hashing (Open Addressing)

• No chaining, every key fits in the hash table.
• Probe sequence

– h(k)
– (h(k) + f(1)) mod HSize
– (h(k) + f(2)) mod HSize , …

• Insertion: Find the first probe with an empty slot.
• Find:  Find the first probe that equals the query 

or is empty.  Stop at HSize probe, in any case.

• Deletion: lazy deletion is needed.  That is, mark 
locations as deleted, if a deleted key resides 
there.
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Linear Probing

• f(i) = i

• Probe sequence
h(k)
(h(k) + 1) mod HSize
(h(k) + 2) mod HSize …

• Insertion (assuming λ < 1)
h := h(k)

while T(h) not empty do

h := (h + 1) mod HSize;

insert k in T(h)
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Linear Probing Example
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Performance of Linear Probing

• If there is an available slot linear probing will find it.
• For large hash tables the expected number of probes 

on insertion is:

• The expected number of probes on successful 
searches is:

• Linear probing suffers from primary clustering.
• Not a good idea to use linear probing with λ > ½.
• Lazy deletion needed.  
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Linear Probing – Clustering 

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster
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Quadratic Probing

• f(i) = i2

• Probe sequence
h(k) 
(h(k) + 1) mod HSize
(h(k) + 4) mod HSize
(h(k) + 9) mod HSize, …

• Insertion (assuming λ < 1/2)
h := h(k);

i := 0;
while T(h) not empty do {

h := (h + 2*i + 1) mod HSize;

i := i + 1 }

insert k in T(h)

Note: (i +1)2 – i2 = 2i + 1
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Quadratic Probing Works for λ < 1/2

• If HSize is prime then (h(x) + i2) mod 
HSize ≠ (h(x) + j2) mod HSize for i ≠ j and 
0 < i,j < HSize/2.

• Proof
(h(x) + i2) mod HSize = (h(x) + j2) mod HSize

(h(x) + i2) - (h(x) + j2) mod HSize = 0

(i2 - j2) mod HSize = 0

(i-j)(i+j) mod HSize = 0

	⇐ HSize does not divide (i-j) or (i+j) 
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Quadratic Probing may Fail if λ > 1/2

51 mod 7 = 2 ; i = 0

(2 + 1) mod 7 = 3; i = 1

(3 + 3) mod 7 = 6; i = 2

(6 + 5) mod 7 = 4; i = 3

(4 + 7) mod 7 = 4; i = 4

(4 + 9) mod 7 = 6; i = 5

(6 + 11) mod 7 = 3; i = 6

(3 + 13) mod 7 = 2, i = 7

…
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Performance of Quadratic Probing

• Although quadratic probing can fail for λ > ½, it 
is not likely to do so. We can use load factors 
greater than ½, but load factors close to 1 
should be avoided.

• Quadratic hashing does not suffer from primary 
clustering, but has only minor secondary 
clustering.

• With load factors near ½ the expected number of 
probes per successful search is about 1.5.

• Lazy deletion must be used.

2/28/05 Lecture 14 - Hashing 22

Double Hashing

• f(i) = i g(k) where g is a second hash function

• Probe sequence

h(k) 
(h(k) + g(k)) mod HSize
(h(k) + 2g(k)) mod HSize

(h(k) + 3g(k)) mod HSize, …

• In choosing g care must be taken so that  it 

never evaluates to 0.

• A good choice for gis to choose a prime R < 

HSize and let g(k) = R – (k mod R).
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Double Hashing Example
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h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes  1                   1                 1                 2                 1                 2
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Double Hashing is Safe for λ < 1

• Let h(k) = k mod p and g(k) = q – (k mod q) where 2 < q 
< p and p and q are primes. The probe sequence h(k) + 
ig(k) mod p probes every entry of the hash table.

Let 0 < m < p, h = h(k), and g = g(k).  We show that h+ig mod p = 
m for some i.  0 < g < p, so g and p are relatively prime.  By 
extended Euclid’s algorithm that are s and t such that

sg + tp = 1.  Choose i = (m-h)s mod p

(h + ig) mod p =

(h + (m-h)sg) mod p =

(h + (m-h)sg + (m-h)tp) mod p =

(h + (m-h)(sg + tp) mod p =

(h  + (m-h)) mod p = m mod p = m
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Deletion in Hashing

• Open hashing (chaining) – no problem
• Closed hashing – must do lazy deletion. Deleted keys 

are marked as deleted.
– Find: done normally

– Insert: treat marked slot as an empty slot and fill it.
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Rehashing

• Build a bigger hash table of approximately twice the size 

when λ exceeds a particular value

– Go through old hash table, ignoring items marked 
deleted

– Recompute hash value for each non-deleted key and 
put the item in new position in new table

– Cannot just copy data from old table because the 
bigger table has a new hash function

• Running time is O(N) but happens very infrequently

– Not good for real-time safety critical applications
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Rehashing Example

• Open hashing – h1(x) = x mod 5 rehashes to 
h2(x) = x mod 11.

0    1    2     3     4

25 37   83

52   98

λ = 1

0    1    2     3     4    5     6    7     8    9     10

25 37         83         52         98
λ = 5/11
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Rehashing Picture

• Starting with table of size 2, double when 
load factor > 1.

1    2   3    4   5    6   7    8  9   10  11 12 13 14  15  16 17 18  19 20  21 23 24  25

hashes
rehashes
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Amortized Analysis of 
Rehashing

• Cost of inserting n keys is < 3n

• 2k + 1 < n < 2k+1

– Hashes = n

– Rehashes = 2 + 22 + … + 2k = 2k+1 – 2

– Total = n + 2k+1 – 2 < 3n

• Example

– n = 33, Total = 33 + 64 –2 = 95 < 99
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Case Study

• Spelling Dictionary - 30,000 words

• Goals
– Fast spell checking

– Minimal storage

• Possible solutions
– Sorted array and binary search

– Open hashing (chaining)

– Closed hashing with linear probing

• Notes
– Almost all searches are successful

– 30,000 word average 8 bytes per word, 240,000 bytes

– Pointers  are 4 bytes
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Storage

• Assume  word are stored as strings and entries in the 
arrays are pointers to the strings.

Binary search Open hashing Closed hashing

N pointers
N/λ + 2N pointers

N/λ pointers 2/28/05 Lecture 14 - Hashing 32

Analysis

• Binary Search
– Storage = N pointers + words = 360,000 bytes

– Time = log2N < 15 probes in worst case

• Open hashing
– Storage = 2N + N/ λ pointers + words

λ = 1 implies 600,000 bytes

– Time = 1 + λ/2 probes per access

λ = 1 implies 1.5 probes per access

• Closed hashing
– Storage = N/ λ pointers + words

λ = 1/2 implies 480,000 bytes

– Time = (1/2)(1+1/(1-λ)) probes
λ = 1/2 implies 1.5 probes per access
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Extendible Hashing

• Extendible hashing is a technique for storing 
large data sets that do not fit in memory.

• An alternative to B-trees
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3 bits of hash value used
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Splitting
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Rehashing
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Analysis of Extendible Hashing

• On deletion neighbors can be merged.

• If table uses k bits but all pages use k-1 

bits then rehashing to a smaller table can 

be done.  Not normally an issue with large 
databases.

• Rehashing does not touch pages.

• Splitting and merging touch only two 

pages.



7

2/28/05 Lecture 14 - Hashing 37

Hashing Summary

• Hashing is one of the most important data 

structures.

• Hashing has many applications where 

operations are limited to find, insert, and 
delete.

• Dynamic hash tables have good amortized 

complexity.

• Extendible hashing is useful in databases.


