
1

1

CSE 326: Data Structures

Graph Algorithms
Part 1: Graph Search

CSE 326: Data Structures

Graph Algorithms
Part 1: Graph Search

Winter Quarter 2005

2

Topic OutlineTopic Outline

� Graph Data Structures

� Graph Properties

� Topological Sort

� Graph Search
• Depth-first, Breadth-first, Iterated Depth-first

• Dijkstra’s Algorithm for Weighted Graphs

• Heuristic Best-First Search

• A* Search

� All-Pairs Shortest Paths
• Floyd-Warshall Algorithm

� Connected Component Algorithms
• Union/Find Algorithm using Up-trees

• Kruskal’s Minimum Spanning Tree Algorithm

3

Graph ADTGraph ADT

Graphs are a formalism for representing
relationships between objects

• a graph G is represented as
G = (V, E)

– V is a set of vertices

– E is a set of edges

• operations include:

– iterating over vertices

– iterating over edges

– iterating over vertices adjacent to a specific vertex

– asking whether an edge exists connected two vertices

Han

Leia

Luke

V = {Han, Leia, Luke}

E = {(Luke, Leia),

(Han, Leia),

(Leia, Han)}

4

Graph Representation 1:
Adjacency Matrix

Graph Representation 1:
Adjacency Matrix

A |V| x |V| array in which an element (u, v) is
true if and only if there is an edge from u to v

Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia
Runtime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex
edge exists? Space required:

5

Graph Representation 1:
Adjacency Matrix

Graph Representation 1:
Adjacency Matrix

A |V| x |V| array in which an element (u, v) is
true if and only if there is an edge from u to v

Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia
Runtime:
iterate over vertices O(|v|)
iterate ever edges O(|v|2)
iterate edges adj. to vertex O(|v|)
edge exists? O(1) Space required: O(|v|2)

6

Graph Representation 2:
Adjacency List

Graph Representation 2:
Adjacency List

A |V|-ary list (array) in which each entry
stores a list (linked list) of all adjacent
vertices

Han

Leia

Luke
Han

Luke

Leia

Runtime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex
edge exists? Space required:

2

7

Runtime:
iterate over vertices O(v)
iterate ever edges O(|e|)
iterate edges adj. to vertex O(d) (d is number of adj. vertices)
edge exists? O(d)

Graph Representation 2:
Adjacency List

Graph Representation 2:
Adjacency List

A |V|-ary list (array) in which each entry
stores a list (linked list) of all adjacent
vertices

Han

Leia

Luke
Han

Luke

Leia

Space required: O(|v| +|e|)
8

TerminologyTerminology

�In directed graphs, edges have a specific direction

�In undirected graphs, edges are two-way

�Vertices u and v are adjacent if (u, v) ∈∈∈∈ E

�A sparse graph has O(|V|) edges (upper bound)

�A dense graph has Ω(|V|2) edges (lower bound)

�A complete graph has an edge between every pair of
vertices

�An undirected graph is connected if there is a path
between any two vertices

9

Weighted GraphsWeighted Graphs

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Each edge has an associated weight or cost.

10

Paths and CyclesPaths and Cycles

A path is a list of vertices {v1, v2, …, vn} such
that (vi, vi+1) ∈∈∈∈ E for all 0 ≤≤≤≤ i < n.

A cycle is a path that begins and ends at the
same node.

Seattle

San Francisco

Dallas

Chicago

Salt Lake City

p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}

11

Path Length and CostPath Length and Cost

Path length: the number of edges in the path

Path cost: the sum of the costs of each edge

Seattle

San Francisco

Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.5 12

Trees as GraphsTrees as Graphs

Every tree is a graph
with some restrictions:

• the tree is directed

• there are no cycles
(directed or
undirected)

• there is a directed
path from the root to
every node

A

B

D E

C

F

HG

3

13

Directed Acyclic Graphs (DAGs)Directed Acyclic Graphs (DAGs)

DAGs are
directed
graphs with
no cycles.

main()

add()

access()

mult()

read()

Trees ⊂ DAGs ⊂ Graphs

program call graph

14

Topological SortTopological Sort

Given a directed graph, G = (V, E), output all
the vertices in V such that no vertex is output
before any other vertex with an edge to it.

check in
airport

call

taxi

taxi to

airport

reserve

flight

pack
bags

take

flight

locate

gate

15

Topological SortTopological Sort

Label each vertex’s in-degree

Initialize a queue to contain all in-degree zero vertices

While there are vertices remaining in the queue

Remove a vertex v with in-degree of zero and output it

Reduce the in-degree of all vertices adjacent to v

Put any of these with new in-degree zero on the queue

Runtime:

16

Topological SortTopological Sort

Label each vertex’s in-degree

Initialize a queue to contain all in-degree zero vertices

While there are vertices remaining in the queue

Remove a vertex v with in-degree of zero and output it

Reduce the in-degree of all vertices adjacent to v

Put any of these with new in-degree zero on the queue

Runtime: O(|v| + |e|)

17

Topic OutlineTopic Outline

� Graph Data Structures

� Graph Properties

� Topological Sort

� Graph Search
• Depth-first, Breadth-first, Iterated Depth-first

• Dijkstra’s Algorithm for Weighted Graphs

• Heuristic Best-First Search

• A* Search

� All-Pairs Shortest Paths
• Floyd-Warshall Algorithm

� Connected Component Algorithms
• Union/Find Algorithm using Up-trees

• Kruskal’s Minimum Spanning Tree Algorithm

18

Graph SearchGraph Search

Many problems in computer science
correspond to searching for a path in a
graph, given a start node and goal criteria

• Route planning – Mapquest

• Packet-switching

• VLSI layout

• 6-degrees of Kevin Bacon

• Program synthesis

• Speech recognition
– We’ll discuss these last two later…

4

19

General Graph Search AlgorithmGeneral Graph Search Algorithm

Search(Start, Goal_test, Criteria)

insert(Start, Open);

repeat

if (empty(Open)) then return fail;

select Node from Open using Criteria;

if (Goal_test(Node)) then return Node;

for each Child of node do

if (Child not already visited) then Insert(Child, Open);

Mark Node as visited;

end

Open – some data structure (e.g., stack, queue, heap)

Criteria – some method for removing an element from Open

20

Depth-First Graph SearchDepth-First Graph Search

DFS(Start, Goal_test)

push(Start, Open);

repeat

if (empty(Open)) then return fail;

Node := pop(Open);

if (Goal_test(Node)) then return Node;

for each Child of node do

if (Child not already visited) then push(Child, Open);

Mark Node as visited;

end

Open – Stack

Criteria – Pop

21

Breadth-First Graph SearchBreadth-First Graph Search

BFS(Start, Goal_test)

enqueue(Start, Open);

repeat

if (empty(Open)) then return fail;

Node := dequeue(Open);

if (Goal_test(Node)) then return Node;

for each Child of node do

if (Child not already visited) then enqueue(Child, Open);

Mark Node as visited;

end

Open – Queue

Criteria – Dequeue (FIFO)

22

Comparison: DFS versus BFSComparison: DFS versus BFS

Depth-first search

• Does not always find shortest paths

• Must be careful to mark visited vertices, or you
could go into an infinite loop if there is a cycle

Breadth-first search

• Always finds shortest paths – optimal solutions

• Marking visited nodes can improve efficiency, but
even without doing so search is guaranteed to
terminate

Is BFS always preferable?

23

DFS Space RequirementsDFS Space Requirements

Assume:

• Longest path in graph is length d

• Highest number of out-edges is k

DFS stack grows at most to size dk

• For k=10, d=15, size is 150

24

BFS Space RequirementsBFS Space Requirements

Assume

• Distance from start to a goal is d

• Highest number of out edges is k BFS

Queue could grow to size kd

• For k=10, d=15, size is
1,000,000,000,000,000

5

25

ConclusionConclusion

For large graphs, DFS is hugely more
memory efficient, if we can limit the
maximum path length to some fixed
d.

• If we knew the distance from the start
to the goal in advance, we can just not
add any children to stack after level d

• But what if we don’t know d in
advance?

26

Iterative-Deepening DFS (I)Iterative-Deepening DFS (I)

Bounded_DFS(Start, Goal_test, Limit)
Start.dist = 0;

push(Start, Open);

repeat
if (empty(Open)) then return fail;

Node := pop(Open);

if (Goal_test(Node)) then return Node;

if (Node.dist ≥Limit) then return fail;
for each Child of node do

if (Child not already i-visited) then

Child.dist := Node.dist + 1;

push(Child, Open);
Mark Node as i-visited;

end

27

Iterative-Deepening DFS (II)Iterative-Deepening DFS (II)

IDFS_Search(Start, Goal_test)

i := 1;

repeat

answer := Bounded_DFS(Start, Goal_test, i);

if (answer != fail) then return answer;

i := i+1;

end

28

Analysis of IDFSAnalysis of IDFS

Work performed with limit < actual
distance to G is wasted – but the wasted
work is usually small compared to
amount of work done during the last
iteration

1

()
d

i d

i

k O k

=

=� Ignore low order
terms!

Same time complexity as BFS

Same space complexity as (bounded) DFS

29

Saving the PathSaving the Path

Our pseudocode returns the goal node
found, but not the path to it

How can we remember the path?

• Add a field to each node, that points
to the previous node along the path

• Follow pointers from goal back to start
to recover path

30

ExampleExample

Seattle

San Francisco

Dallas

Salt Lake City

6

31

Example (Unweighted Graph)Example (Unweighted Graph)

Seattle

San Francisco

Dallas

Salt Lake City

32

Example (Unweighted Graph)Example (Unweighted Graph)

Seattle

San Francisco

Dallas

Salt Lake City

33

Graph Search, Saving PathGraph Search, Saving Path

Search(Start, Goal_test, Criteria)
insert(Start, Open);
repeat

if (empty(Open)) then return fail;
select Node from Open using Criteria;
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then

Child.previous := Node;
Insert(Child, Open);

Mark Node as visited;

end
34

Shortest Path for Weighted
Graphs

Shortest Path for Weighted
Graphs

Given a graph G = (V, E) with edge
costs c(e), and a vertex s ∈∈∈∈ V, find the
shortest (lowest cost) path from s to
every vertex in V

Assume: only positive edge costs

35

Edsger Wybe Dijkstra
(1930-2002)
Edsger Wybe Dijkstra
(1930-2002)

�Invented concepts of structured programming, synchronization,
weakest precondition, and "semaphores" for controlling computer
processes. The Oxford English Dictionary cites his use of the
words "vector" and "stack" in a computing context.

�Believed programming should be taught without computers

�1972 Turing Award

�“In their capacity as a tool, computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge,
they are without precedent in the cultural history of mankind.”

36

Dijkstra’s Algorithm for
Single Source Shortest Path

Dijkstra’s Algorithm for
Single Source Shortest Path

Similar to breadth-first search, but
uses a heap instead of a queue:

• Always select (expand) the vertex that
has a lowest-cost path to the start
vertex

Correctly handles the case where the
lowest-cost (shortest) path to a
vertex is not the one with fewest
edges

7

37

Pseudocode for DijkstraPseudocode for Dijkstra

Initialize the cost of each node to ∞
s.cost := 0
insert(s, 0, heap);
While (! empty(heap))

n := deleteMin(heap);
For each edge e=(n,a) do

if (n.cost + e.cost < a.cost) then
a.cost = n.cost + e.cost;
a.previous = n;
if (a is in the heap) then

decreaseKey(a, a.cost, heap)
else insert(a, a.cost, heap)

end
end

38

Important FeaturesImportant Features

Once a vertex is removed from the
head, the cost of the shortest path to
that node is known

While a vertex is still in the heap,
another shorter path to it might still
be found

The shortest path itself can found by
following the backward pointers
stored in node.previous

39

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A 0

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

0 ∞
∞ ∞

∞

∞

∞

∞

40

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B 2

C 1

D 4

E ∞

F ∞

G ∞

H ∞

0 2
∞ ∞

∞

∞

1

4

41

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B 2

C x 1

D 4

E 12

F ∞

G ∞

H ∞

0 2
∞ ∞

∞

12

1

4

42

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B x 2

C x 1

D 4

E 12

F 4

G ∞

H ∞

0 2 4 ∞

∞

12

1

4

8

43

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B x 2

C x 1

D x 4

E 12

F x 4

G ∞

H 7

0 2 4 7

∞

12

1

4

44

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B x 2

C x 1

D x 4

E 12

F x 4

G 8

H x 7

0 2 4 7

8

12

1

4

45

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B x 2

C x 1

D x 4

E 11

F x 4

G x 8

H x 7

0 2 4 7

8

11

1

4

46

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B x 2

C x 1

D x 4

E x 11

F x 4

G x 8

H x 7

0 2 4 7

8

11

1

4

47

Data Structures
for Dijkstra’s Algorithm

Data Structures
for Dijkstra’s Algorithm

Select the unknown node with the lowest cost

findMin/deleteMin

a’s cost = min(a’s old cost, …)

decreaseKey or
insert

|V| times:

|E| times:

runtime: O(|E| log |V|)

O(log |V|)

O(log |V|)

48

Topic OutlineTopic Outline

� Graph Data Structures

� Graph Properties

� Topological Sort

� Graph Search
• Depth-first, Breadth-first, Iterated Depth-first

• Dijkstra’s Algorithm for Weighted Graphs

• Heuristic Best-First Search

• A* Search

� All-Pairs Shortest Paths
• Floyd-Warshall Algorithm

� Connected Component Algorithms
• Union/Find Algorithm using Up-trees

• Kruskal’s Minimum Spanning Tree Algorithm

9

49

Problem: Large GraphsProblem: Large Graphs

�It is expensive to find optimal paths
in large graphs, using BFS, IDFS, or
Dijkstra’s algorithm (for weighted
graphs)

�How can we search large graphs
efficiently by using “commonsense”
about which direction looks most
promising?

50

ExampleExample

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v
e

8
th

A
v
e

7
th

A
v
e

6
th

A
v
e

5
th

A
v
e

4
th

A
v
e

3
rd

A
v

e

2
n

d
A

v
e

S

G

53nd St

Plan a route from 9th & 50th to 3rd & 51st

51

ExampleExample

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v
e

8
th

A
v
e

7
th

A
v
e

6
th

A
v
e

5
th

A
v
e

4
th

A
v
e

3
rd

A
v

e

2
n

d
A

v
e

S

G

53nd St

Plan a route from 9th & 50th to 3rd & 51st

52

Best-First SearchBest-First Search

The Manhattan distance (∆ x+ ∆ y) is an
estimate of the distance to the goal

• It is a search heuristic

�Best-First Search

• Order nodes in priority to minimize
estimated distance to the goal

�Compare: BFS / Dijkstra

• Order nodes in priority to minimize distance
from the start

53

Best-First SearchBest-First Search

Best_First_Search(Start, Goal_test)

insert(Start, h(Start), heap);

repeat

if (empty(heap)) then return fail;
Node := deleteMin(heap);

if (Goal_test(Node)) then return Node;

for each Child of node do
if (Child not already visited) then

insert(Child, h(Child),heap);

end

Mark Node as visited;
end

Open – Heap (priority queue)
Criteria – Smallest key (highest priority)
h(n) – heuristic estimate of distance from n to closest goal

54

ObstaclesObstacles

Best-FS eventually will expand vertex
to get back on the right track

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v
e

8
th

A
v
e

7
th

A
v
e

6
th

A
v
e

5
th

A
v
e

4
th

A
v
e

3
rd

A
v

e

2
n

d
A

v
e

S
G

10

55

Non-Optimality of Best-FirstNon-Optimality of Best-First

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v
e

8
th

A
v
e

7
th

A
v
e

6
th

A
v
e

5
th

A
v
e

4
th

A
v
e

3
rd

A
v

e

2
n

d
A

v
e

S G

53nd St

Path found by
Best-first

Shortest
Path

56

Improving Best-FirstImproving Best-First

�Best-first is often tremendously faster
than BFS/Dijkstra, but might stop with a
non-optimal solution

�How can it be modified to be (almost)
as fast, but guaranteed to find optimal
solutions?

�A* - Hart, Nilsson, Raphael 1968
• One of the first significant algorithms

developed in AI

• Widely used in many applications

57

A*A*

Exactly like Best-first search, but using a different
criteria for the priority queue:

minimize (distance from start) +
(estimated distance to goal)

priority f(n) = g(n) + h(n)
f(n) = priority of a node

g(n) = true distance from start

h(n) = heuristic distance to goal

58

Optimality of A*Optimality of A*

Suppose the estimated distance is always
less than or equal to the true distance to
the goal

• heuristic is a lower bound

Then: when the goal is removed from the
priority queue, we are guaranteed to
have found a shortest path!

59

A* in ActionA* in Action

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v
e

8
th

A
v
e

7
th

A
v
e

6
th

A
v
e

5
th

A
v
e

4
th

A
v
e

3
rd

A
v

e

2
n

d
A

v
e

S G

53nd St

h=6+2

H=1+7

h=7+3

60

Applications of A*: PlanningApplications of A*: Planning

A huge graph may be implicitly specified by
rules for generating it on-the-fly

Blocks world:

• vertex = relative positions of all blocks

• edge = robot arm stacks one block

stack(blue,red)

stack(green,red)

stack(green,blue)

stack(blue,table)

stack(green,blue)

11

61

Blocks WorldBlocks World

Blocks world:

• distance = number of stacks to perform

• heuristic lower bound = number of blocks
out of place

out of place = 2, true distance to goal = 3

62

Application of A*: Speech
Recognition

Application of A*: Speech
Recognition

(Simplified) Problem:

• System hears a sequence of 3 words

• It is unsure about what it heard

– For each word, it has a set of possible
“guesses”

– E.g.: Word 1 is one of { “hi”, “high”, “I” }

• What is the most likely sentence it heard?

63

Speech Recognition as Shortest
Path

Speech Recognition as Shortest
Path

Convert to a shortest-path problem:

• Utterance is a “layered” DAG

• Begins with a special dummy “start” node

• Next: A layer of nodes for each word position, one
node for each word choice

• Edges between every node in layer i to every node
in layer i+1

– Cost of an edge is smaller if the pair of words frequently
occur together in real speech

+ Technically: - log probability of co-occurrence

• Finally: a dummy “end” node

• Find shortest path from start to end node

64

W1
1

W1
1W3

1

W4
1

W2
1

W1
2

W2
2

W1
3

W2
3

W3
3

W4
3

65

Summary: Graph SearchSummary: Graph Search

Depth First
• Little memory required

• Might find non-optimal path

Breadth First
• Much memory required

• Always finds optimal path

Dijskstra’s Short Path Algorithm
• Like BFS for weighted graphs

Best First
• Can visit fewer nodes

• Might find non-optimal path

A*
• Can visit fewer nodes than BFS or Dijkstra

• Optimal if heuristic estimate is a lower-bound

