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Topic OutlineTopic Outline

� Graph Data Structures

� Graph Properties

� Topological Sort

� Graph Search
• Depth-first, Breadth-first, Iterated Depth-first

• Dijkstra’s Algorithm for Weighted Graphs

• Heuristic Best-First Search

• A* Search

� All-Pairs Shortest Paths
• Floyd-Warshall Algorithm

� Connected Component Algorithms
• Union/Find Algorithm using Up-trees

• Kruskal’s Minimum Spanning Tree Algorithm
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Graph ADTGraph ADT

Graphs are a formalism for representing 
relationships between objects

• a graph G is represented as 
G = (V, E)

– V is a set of vertices

– E is a set of edges

• operations include:

– iterating over vertices

– iterating over edges

– iterating over vertices adjacent to a specific vertex

– asking whether an edge exists connected two vertices

Han

Leia

Luke

V = {Han, Leia, Luke}

E = {(Luke, Leia), 

(Han, Leia), 

(Leia, Han)}
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Graph Representation 1: 
Adjacency Matrix

Graph Representation 1: 
Adjacency Matrix

A |V| x |V| array in which an element (u, v) is 
true if and only if there is an edge from u to v

Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia
Runtime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex
edge exists? Space required:
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Graph Representation 1: 
Adjacency Matrix

Graph Representation 1: 
Adjacency Matrix

A |V| x |V| array in which an element (u, v) is 
true if and only if there is an edge from u to v

Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia
Runtime:
iterate over vertices  O(|v|)
iterate ever edges    O(|v|2)
iterate edges adj. to vertex  O(|v|)
edge exists?  O(1) Space required: O(|v|2)
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Graph Representation 2: 
Adjacency List

Graph Representation 2: 
Adjacency List

A |V|-ary list (array) in which each entry 
stores a list (linked list) of all adjacent 
vertices

Han

Leia

Luke
Han

Luke

Leia

Runtime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex
edge exists? Space required:
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Runtime:
iterate over vertices  O(v)
iterate ever edges   O(|e|)
iterate edges adj. to vertex O(d) (d is number of adj. vertices)
edge exists? O(d)

Graph Representation 2: 
Adjacency List

Graph Representation 2: 
Adjacency List

A |V|-ary list (array) in which each entry 
stores a list (linked list) of all adjacent 
vertices

Han

Leia

Luke
Han

Luke

Leia

Space required: O(|v| +|e|)
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TerminologyTerminology

�In directed graphs, edges have a specific direction

�In undirected graphs, edges are two-way

�Vertices u and v are adjacent if (u, v) ∈∈∈∈ E

�A sparse graph has O(|V|) edges (upper bound)

�A dense graph has Ω(|V|2) edges (lower bound)

�A complete graph has an edge between every pair of 
vertices

�An undirected graph is connected if there is a path 
between any two vertices

9

Weighted GraphsWeighted Graphs

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Each edge has an associated weight or cost.
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Paths and CyclesPaths and Cycles

A path is a list of vertices {v1, v2, …, vn} such 
that (vi, vi+1) ∈∈∈∈ E for all 0 ≤≤≤≤ i < n.

A cycle is a path that begins and ends at the 
same node.

Seattle

San Francisco

Dallas

Chicago

Salt Lake City

p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}
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Path Length and CostPath Length and Cost

Path length: the number of edges in the path

Path cost: the sum of the costs of each edge

Seattle

San Francisco

Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.5 12

Trees as GraphsTrees as Graphs

Every tree is a graph 
with some restrictions:

• the tree is directed

• there are no cycles
(directed or 
undirected)

• there is a directed 
path from the root to 
every node

A

B

D E

C

F

HG
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Directed Acyclic Graphs (DAGs)Directed Acyclic Graphs (DAGs)

DAGs are 
directed 
graphs with 
no cycles.

main()

add()

access()

mult()

read()

Trees ⊂ DAGs ⊂ Graphs

program call graph
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Topological SortTopological Sort

Given a directed graph, G = (V, E), output all 
the vertices in V such that no vertex is output 
before any other vertex with an edge to it.

check in
airport

call

taxi

taxi to

airport

reserve

flight

pack
bags

take

flight

locate

gate
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Topological SortTopological Sort

Label each vertex’s in-degree

Initialize a queue to contain all in-degree zero vertices

While there are vertices remaining in the queue

Remove a vertex v with in-degree of zero and output it

Reduce the in-degree of all vertices adjacent to v

Put any of these with new in-degree zero on the queue

Runtime:
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Topological SortTopological Sort

Label each vertex’s in-degree

Initialize a queue to contain all in-degree zero vertices

While there are vertices remaining in the queue

Remove a vertex v with in-degree of zero and output it

Reduce the in-degree of all vertices adjacent to v

Put any of these with new in-degree zero on the queue

Runtime:  O(|v| + |e|)
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Topic OutlineTopic Outline

� Graph Data Structures

� Graph Properties

� Topological Sort

� Graph Search
• Depth-first, Breadth-first, Iterated Depth-first

• Dijkstra’s Algorithm for Weighted Graphs

• Heuristic Best-First Search

• A* Search

� All-Pairs Shortest Paths
• Floyd-Warshall Algorithm

� Connected Component Algorithms
• Union/Find Algorithm using Up-trees

• Kruskal’s Minimum Spanning Tree Algorithm
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Graph SearchGraph Search

Many problems in computer science 
correspond to searching for a path in a 
graph, given a start node and goal criteria

• Route planning – Mapquest

• Packet-switching

• VLSI layout

• 6-degrees of Kevin Bacon

• Program synthesis 

• Speech recognition
– We’ll discuss these last two later…
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General Graph Search AlgorithmGeneral Graph Search Algorithm

Search( Start, Goal_test, Criteria)

insert(Start, Open);

repeat

if (empty(Open)) then return fail;

select Node from Open using Criteria;

if (Goal_test(Node)) then return Node;

for each Child of node do

if (Child not already visited) then Insert( Child, Open );

Mark Node as visited;

end

Open – some data structure (e.g., stack, queue, heap)

Criteria – some method for removing an element from Open
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Depth-First Graph SearchDepth-First Graph Search

DFS( Start, Goal_test)

push(Start, Open);

repeat

if (empty(Open)) then return fail;

Node := pop(Open);

if (Goal_test(Node)) then return Node;

for each Child of node do

if (Child not already visited) then push(Child, Open);

Mark Node as visited;

end

Open – Stack

Criteria – Pop
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Breadth-First Graph SearchBreadth-First Graph Search

BFS( Start, Goal_test)

enqueue(Start, Open);

repeat

if (empty(Open)) then return fail;

Node := dequeue(Open);

if (Goal_test(Node)) then return Node;

for each Child of node do

if (Child not already visited) then enqueue(Child, Open);

Mark Node as visited;

end

Open – Queue

Criteria – Dequeue (FIFO)
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Comparison: DFS versus BFSComparison: DFS versus BFS

Depth-first search

• Does not always find shortest paths

• Must be careful to mark visited vertices, or you 
could go into an infinite loop if there is a cycle

Breadth-first search

• Always finds shortest paths – optimal solutions

• Marking visited nodes can improve efficiency, but 
even without doing so search is guaranteed to 
terminate

Is BFS always preferable?
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DFS Space RequirementsDFS Space Requirements

Assume:

• Longest path in graph is length d

• Highest number of out-edges is k

DFS stack grows at most to size dk

• For k=10, d=15, size is 150
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BFS Space RequirementsBFS Space Requirements

Assume 

• Distance from start to a goal is d

• Highest number of out edges is k BFS

Queue could grow to size kd

• For k=10, d=15, size is 
1,000,000,000,000,000



5

25

ConclusionConclusion

For large graphs, DFS is hugely more 
memory efficient, if we can limit the 
maximum path length to some fixed 
d.

• If we knew the distance from the start 
to the goal in advance, we can just not 
add any children to stack after level d

• But what if we don’t know d in 
advance?
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Iterative-Deepening DFS (I)Iterative-Deepening DFS (I)

Bounded_DFS(Start, Goal_test, Limit)
Start.dist = 0;

push(Start, Open);

repeat
if (empty(Open)) then return fail;

Node := pop(Open);

if (Goal_test(Node)) then return Node;

if (Node.dist ≥Limit) then return fail;
for each Child of node do

if (Child not already i-visited) then 

Child.dist := Node.dist + 1;

push(Child, Open);
Mark Node as i-visited;

end
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Iterative-Deepening DFS (II)Iterative-Deepening DFS (II)

IDFS_Search(Start, Goal_test)

i := 1;

repeat

answer := Bounded_DFS(Start, Goal_test, i);

if (answer != fail) then return answer;

i := i+1;

end
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Analysis of IDFSAnalysis of IDFS

Work performed with limit < actual 
distance to G is wasted – but the wasted 
work is usually small compared to 
amount of work done during the last
iteration

1

( )
d

i d

i

k O k

=

=� Ignore low order 
terms!

Same time complexity as BFS

Same space complexity as (bounded) DFS
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Saving the PathSaving the Path

Our pseudocode returns the goal node 
found, but not the path to it

How can we remember the path?

• Add a field to each node, that points 
to the previous node along the path

• Follow pointers from goal back to start 
to recover path

30

ExampleExample

Seattle

San Francisco

Dallas

Salt Lake City
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Example (Unweighted Graph)Example (Unweighted Graph)

Seattle

San Francisco

Dallas

Salt Lake City
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Example (Unweighted Graph)Example (Unweighted Graph)

Seattle

San Francisco

Dallas

Salt Lake City
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Graph Search, Saving PathGraph Search, Saving Path

Search( Start, Goal_test, Criteria)
insert(Start, Open);
repeat

if (empty(Open)) then return fail;
select Node from Open using Criteria;
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then

Child.previous := Node;
Insert( Child, Open );

Mark Node as visited;

end
34

Shortest Path for Weighted 
Graphs

Shortest Path for Weighted 
Graphs

Given a graph G = (V, E) with edge 
costs c(e), and a vertex s ∈∈∈∈ V, find the 
shortest (lowest cost) path from s to 
every vertex in V

Assume: only positive edge costs
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Edsger Wybe Dijkstra
(1930-2002)
Edsger Wybe Dijkstra
(1930-2002)

�Invented concepts of structured programming, synchronization, 
weakest precondition, and "semaphores" for controlling computer 
processes. The Oxford English Dictionary cites his use of the 
words "vector" and "stack" in a computing context.

�Believed programming should be taught without computers

�1972 Turing Award

�“In their capacity as a tool, computers will be but a ripple on the 
surface of our culture. In their capacity as intellectual challenge, 
they are without precedent in the cultural history of mankind.”
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Dijkstra’s Algorithm for 
Single Source Shortest Path

Dijkstra’s Algorithm for 
Single Source Shortest Path

Similar to breadth-first search, but 
uses a heap instead of a queue:

• Always select (expand) the vertex that 
has a lowest-cost path to the start 
vertex 

Correctly handles the case where the 
lowest-cost (shortest) path to a 
vertex is not the one with fewest 
edges



7

37

Pseudocode for DijkstraPseudocode for Dijkstra

Initialize the cost of each node to ∞
s.cost := 0
insert(s, 0, heap);
While (! empty(heap))

n := deleteMin(heap);
For each edge e=(n,a) do

if (n.cost + e.cost < a.cost) then
a.cost = n.cost + e.cost;
a.previous = n;
if (a is in the heap) then 

decreaseKey(a, a.cost, heap)
else insert(a, a.cost, heap)

end
end
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Important FeaturesImportant Features

Once a vertex is removed from the 
head, the cost of the shortest path to 
that node is known

While a vertex is still in the heap, 
another shorter path to it might still 
be found

The shortest path itself can found by 
following the backward pointers 
stored in node.previous
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Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A 0

B ∞ 

C ∞ 

D ∞ 

E ∞ 

F ∞ 

G ∞ 

H ∞ 

0 ∞
∞ ∞

∞

∞

∞

∞
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Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B 2

C 1

D 4

E ∞ 

F ∞ 

G ∞ 

H ∞ 

0 2
∞ ∞

∞

∞

1

4
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Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A
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B

D

F H

G
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9
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vertex visited cost

A x 0

B 2

C x 1

D 4

E 12

F ∞ 

G ∞ 

H ∞ 

0 2
∞ ∞

∞

12

1

4
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Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G
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2 2 3
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1
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11
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9
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vertex visited cost

A x 0

B x 2

C x 1

D 4

E 12

F 4

G ∞ 

H ∞ 

0 2 4 ∞

∞

12

1

4
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Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1
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3

10

11

1
1

9
4

2

7

vertex visited cost

A x 0

B x 2

C x 1

D x 4

E 12

F x 4

G ∞ 

H 7

0 2 4 7

∞

12

1

4
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Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D

F H

G

E
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1
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3
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1

9
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2
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vertex visited cost

A x 0

B x 2

C x 1

D x 4

E 12

F x 4

G 8

H x 7

0 2 4 7

8

12

1

4
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Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A
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vertex visited cost

A x 0

B x 2

C x 1

D x 4
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8
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1

4

46

Dijkstra’s Algorithm in ActionDijkstra’s Algorithm in Action

A

C

B

D
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G

E
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vertex visited cost

A x 0

B x 2

C x 1

D x 4

E x 11

F x 4

G x 8

H x 7
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8
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1

4
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Data Structures 
for Dijkstra’s Algorithm

Data Structures 
for Dijkstra’s Algorithm

Select the unknown node with the lowest cost

findMin/deleteMin

a’s cost = min(a’s old cost, …)

decreaseKey or
insert

|V| times:

|E| times:

runtime:  O(|E| log |V|)

O(log |V|)

O(log |V|)
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Topic OutlineTopic Outline

� Graph Data Structures

� Graph Properties

� Topological Sort

� Graph Search
• Depth-first, Breadth-first, Iterated Depth-first

• Dijkstra’s Algorithm for Weighted Graphs

• Heuristic Best-First Search

• A* Search

� All-Pairs Shortest Paths
• Floyd-Warshall Algorithm

� Connected Component Algorithms
• Union/Find Algorithm using Up-trees

• Kruskal’s Minimum Spanning Tree Algorithm
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Problem: Large GraphsProblem: Large Graphs

�It is expensive to find optimal paths 
in large graphs, using BFS, IDFS, or 
Dijkstra’s algorithm (for weighted 
graphs)

�How can we search large graphs 
efficiently by using “commonsense” 
about which direction looks most 
promising?
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ExampleExample
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Plan a route from 9th & 50th to 3rd & 51st
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ExampleExample

52nd St
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Plan a route from 9th & 50th to 3rd & 51st

52

Best-First SearchBest-First Search

The Manhattan distance (∆ x+ ∆ y) is an 
estimate of the distance to the goal

• It is a search heuristic

�Best-First Search

• Order nodes in priority to minimize 
estimated distance to the goal

�Compare: BFS / Dijkstra

• Order nodes in priority to minimize distance 
from the start

53

Best-First SearchBest-First Search

Best_First_Search( Start, Goal_test)

insert(Start, h(Start), heap);

repeat

if (empty(heap)) then return fail;
Node := deleteMin(heap);

if (Goal_test(Node)) then return Node;

for each Child of node do
if (Child not already visited) then

insert(Child, h(Child),heap);

end

Mark Node as visited;
end

Open – Heap (priority queue)
Criteria – Smallest key (highest priority)
h(n) – heuristic estimate of distance from n to closest goal
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ObstaclesObstacles

Best-FS eventually will expand vertex 
to get back on the right track
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Non-Optimality of Best-FirstNon-Optimality of Best-First
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Shortest 
Path
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Improving Best-FirstImproving Best-First

�Best-first is often tremendously faster 
than BFS/Dijkstra, but might stop with a 
non-optimal solution

�How can it be modified to be (almost) 
as fast, but guaranteed to find optimal 
solutions?

�A* - Hart, Nilsson, Raphael 1968
• One of the first significant algorithms 

developed in AI

• Widely used in many applications
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A*A*

Exactly like Best-first search, but using a different 
criteria for the priority queue:

minimize  (distance from start) +
(estimated distance to goal)

priority f(n) = g(n) + h(n)
f(n) = priority of a node

g(n) = true distance from start

h(n) = heuristic distance to goal
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Optimality of A*Optimality of A*

Suppose the estimated distance is always
less than or equal to the true distance to 
the goal

• heuristic is a lower bound

Then:  when the goal is removed from the 
priority queue, we are guaranteed to 
have found a shortest path!
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A* in ActionA* in Action
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Applications of A*: PlanningApplications of A*: Planning

A huge graph may be implicitly specified by 
rules for generating it on-the-fly

Blocks world: 

• vertex = relative positions of all blocks

• edge = robot arm stacks one block

stack(blue,red)

stack(green,red)

stack(green,blue)

stack(blue,table)

stack(green,blue)
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Blocks WorldBlocks World

Blocks world: 

• distance = number of stacks to perform

• heuristic lower bound = number of blocks 
out of place

# out of place = 2, true distance to goal = 3
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Application of A*: Speech 
Recognition

Application of A*: Speech 
Recognition

(Simplified) Problem:

• System hears a sequence of 3 words

• It is unsure about what it heard 

– For each word, it has a set of possible 
“guesses”

– E.g.: Word 1 is one of { “hi”, “high”, “I” }

• What is the most likely sentence it heard?
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Speech Recognition as Shortest 
Path

Speech Recognition as Shortest 
Path

Convert to a shortest-path problem:

• Utterance is a “layered” DAG

• Begins with a special dummy “start” node

• Next: A layer of nodes for each word position, one 
node for each word choice

• Edges between every node in layer i to every node 
in layer i+1

– Cost of an edge is smaller if the pair of words frequently 
occur together in real speech

+ Technically: - log probability of co-occurrence

• Finally: a dummy “end” node

• Find shortest path from start to end node
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Summary: Graph SearchSummary: Graph Search

Depth First
• Little memory required

• Might find non-optimal path

Breadth First
• Much memory required

• Always finds optimal path

Dijskstra’s Short Path Algorithm
• Like BFS for weighted graphs

Best First
• Can visit fewer nodes

• Might find non-optimal path

A*
• Can visit fewer nodes than BFS or Dijkstra

• Optimal if heuristic estimate is a lower-bound


