

Graph Representation 1: Adjacency Matrix				

Topic Outline

- Graph Data Structures
- Graph Properties
- Topological Sort
- Graph Search
- Depth-first, Breadth-first, Iterated Depth-first
- Dijkstra's Algorithm for Weighted Graphs
- Heuristic Best-First Search
- A* Search
- All-Pairs Shortest Paths
- Floyd-Warshall Algorithm

Connected Component Algorithms

- Union/Find Algorithm using Up-trees
- Kruskal's Minimum Spanning Tree Algorithm

Graph Representation 1:

 Adjacency MatrixA $|v| \times|v|$ array in which an element (u, v) is true if and only if there is an edge from u to v

Runtime:
iterate over vertices iterate ever edges iterate edges adj. to vertex edge exists?

Space required:

Graph Representation 2: Adjacency List

A $|\mathrm{V}|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Runtime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex edge exists?
Space required:

Graph Representation 2: Adjacency List

A $|\mathrm{V}|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Runtime:
iterate over vertices $\mathrm{O}(\mathrm{v})$
iterate ever edges $\mathrm{O}(|\mathrm{e}|)$
iterate edges adj. to vertex $\mathrm{O}(\mathrm{d})$ (d is number of adj. vertices) edge exists? O(d)

Space required: $\mathrm{O}(|\mathrm{v}|+|\mathrm{e}|)$

Weighted Graphs

Each edge has an associated weight or cost.

Terminology

In directed graphs, edges have a specific direction
II undirected graphs, edges are two-way
\square Vertices \mathbf{u} and \mathbf{v} are adjacent if (u, v) $\in \mathbf{E}$
$\square \mathrm{A}$ sparse graph has $\mathrm{O}(|\mathrm{V}|)$ edges (upper bound)
$\square \mathrm{A}$ dense graph has $\Omega\left(|\mathrm{V}|^{2}\right)$ edges (lower bound)
-A complete graph has an edge between every pair of vertices
An undirected graph is connected if there is a path between any two vertices

Trees as Graphs	
Every tree is a graph with some restrictions: - the tree is directed - there are no cycles (directed or undirected) - there is a directed path from the root to every node	

Topological Sort
Label each vertex's in-degree
Initialize a queue to contain all in-degree zero vertices
While there are vertices remaining in the queue
Remove a vertex v with in-degree of zero and output it
Reduce the in-degree of all vertices adjacent to v
Put any of these with new in-degree zero on the queue
Runtime:

Topic Outline	
Graph Data Structures Graph Properties Topological Sort - Graph Search - Depth-first, Breadth-first, Iterated Depth-first - Dijkstra's Algorithm for Weighted Graphs - Heuristic Best-First Search - A* Search - All-Pairs Shortest Paths - Floyd-Warshall Algorithm Connected Component Algorithms - Union/Find Algorithm using Up-trees - Kruskal's Minimum Spanning Tree Algorithm	
	17

Graph Search

Many problems in computer science correspond to searching for a path in a
graph, given a start node and goal criteria

- Route planning - Mapquest
- Packet-switching
- VLSI layout
- 6-degrees of Kevin Bacon
- Program synthesis
- Speech recognition
- We'll discuss these last two later...

Graph Search
Many problems in computer science
correspond to searching for a path in a
graph, given a start node and goal criteria
• Route planning - Mapquest
• Packet-switching
• VLSI layout
- 6-degrees of Kevin Bacon
• Spegram synthesis
- We'll discuss these last two later...

General Graph Search Algorithm
Open - some data structure (e.g., stack, queue, heap)
Criteria - some method for removing an element from Open
Search(Start, Goal_test, Criteria) insert(Start, Open); repeat if (empty(Open)) then return fail; select Node from Open using Criteria; if (Goal_test(Node)) then return Node; for each Child of node do if (Child not already visited) then Insert(Child, Open); Mark Node as visited; end

Breadthefirst Graph Search
Open - Queue
Criteria - Dequeue (FIFO)
BFS(Start, Goal_test)
enqueue(Start, Open);
repeat
if (empty(Open)) then return fail;
Node := dequeue(Open);
if (Goal_test(Node)) then return Node;
for each Child of node do
if (Child not already visited) then enqueue(Child, Open);
Mark Node as visited;
end

DFS Space Requirements
Assume:
• Longest path in graph is length d
• Highest number of out-edges is k
DFS stack grows at most to size $d k$
• For $k=10, d=15$, size is 150

Depth-First Graph Search

```
Open - Stack
Criteria - Pop
DFS( Start, Goal test)
        push(Start, Open);
    repeat
        if (empty(Open)) then return fail;
        Node := pop(Open);
        if (Goal_test(Node)) then return Node;
            for each Child of node do
                    if (Child not already visited) then push(Child, Open);
        Mark Node as visited;
    end
```

Comparison: DFS versus BFS
Depth-first search

- Does not always find shortest paths
- Must be careful to mark visited vertices, or you could go into an infinite loop if there is a cycle
Breadth-first search
- Always finds shortest paths - optimal solutions
- Marking visited nodes can improve efficiency, but even without doing so search is guaranteed to terminate

Is BFS always preferable?

BFS Space Requirements

Assume

- Distance from start to a goal is d
- Highest number of out edges is k BFS

Queue could grow to size k^{d}

- For $k=10, d=15$, size is

1,000,000,000,000,000

Iterative-Deepening DFS (III)
IDFS_Search(Start, Goal_test) i := 1 ; repeat answer := Bounded_DFS(Start, Goal_test, i); if (answer != fail) then return answer; i := i+1; end

| Analysis of IDFS |
| :---: | :---: |
| Work performed with limit < actual
 distance to G is wasted - but the wasted
 work is usually small compared to
 amount of work done during the last
 iteration |
| $\sum_{i=1}^{d} k^{i}=O\left(k^{d}\right) \quad$Ignore low order
 terms! |
| Same time complexity as BFS
 Same space complexity as (bounded) DFS |

Saving the Path
Our pseudocode returns the goal node found, but not the path to it How can we remember the path? - Add a field to each node, that points to the previous node along the path - Follow pointers from goal back to start to recover path

Graph Search, Saving Path
Search(Start, Goal_test, Criteria) insert(Start, Open); repeat if (empty(Open)) then return fail; select Node from Open using Criteria; if (Goal_test(Node)) then return Node; for each Child of node do if (Child not already visited) then Child.previous := Node; Insert(Child, Open); Mark Node as visited; end

33

Shortest Path for Weighted

 GraphsGiven a graph $G=(\mathbf{V}, E)$ with edge costs $\mathrm{c}(\mathrm{e})$, and a vertex $\mathbf{s} \in \mathrm{v}$, find the shortest (lowest cost) path from s to every vertex in v

Assume: only positive edge costs

Dijkstra's Algorithm for Single Source Shortest Path

Similar to breadth-first search, but uses a heap instead of a queue:

- Always select (expand) the vertex that has a lowest-cost path to the start vertex
Correctly handles the case where the lowest-cost (shortest) path to a vertex is not the one with fewest edges

Important Features
Once a vertex is removed from the
head, the cost of the shortest path to
that node is known
While a vertex is still in the heap,
another shorter path to it might still
be found
The shortest path itself can found by
following the backward pointers
stored in node.previous

Dijkstra's Algorithm in Action

42

Topic Outline

Graph Data Structures
Graph Properties
Topological Sort
Graph Search
-

- Heuristic Best-First Search
- A* Search

All-Pairs Shortest Paths

- Floyd-Warshall Algorithm
[. Connected Component Algorithms
- Union/Find Algorithm using Up-trees
- Kruskal's Minimum Spanning Tree Algorithm

Problem: Large Graphs

It is expensive to find optimal paths in large graphs, using BFS, IDFS, or Dijkstra's algorithm (for weighted graphs)
\square How can we search large graphs efficiently by using "commonsense" about which direction looks most promising?

Best-First Search
Open - Heap (priority queue) Criteria - Smallest key (highest priority) h(n) - heuristic estimate of distance from n to closest goal Best_First_Search(Start, Goal_test) insert(Start, h(Start), heap); repeat if (empty(heap)) then return fail; Node := deleteMin(heap); if (Goal_test(Node)) then return Node; for each Child of node do if (Child not already visited) then insert(Child, h(Child),heap); end Mark Node as visited; end

A*
Exactly like Best-first search, but using a different criteria for the priority queue: minimize (distance from start) + (estimated distance to goal)
priority $f(n)=g(n)+h(n)$ $f(n)=$ priority of a node $g(n)=$ true distance from start $h(n)=$ heuristic distance to goal

Optimality of \mathbf{A}^{*}
Suppose the estimated distance is always less than or equal to the true distance to the goal • heuristic is a lower bound Then: when the goal is removed from the priority queue, we are guaranteed to have found a shortest path!

Applications of A^{*} : Planning

A huge graph may be implicitly specified by rules for generating it on-the-fly
Blocks world:

- vertex = relative positions of all blocks

묘묘

Blocks World

Blocks world:

- distance = number of stacks to perform
- heuristic lower bound = number of blocks out of place

\# out of place = 2, true distance to goal = 3

(Simplified) Problem:

- System hears a sequence of 3 words
- It is unsure about what it heard
-For each word, it has a set of possible "guesses"
-E.g.: Word 1 is one of $\{$ "hi", "high", "l" \}
- What is the most likely sentence it heard?

Summary: Graph Search

Depth First

- Little memory required
- Might find non-optimal path

Breadth First

- Much memory required
- Always finds optimal path

Dijskstra's Short Path Algorithm

- Like BFS for weighted graphs

Best First

- Can visit fewer nodes
- Might find non-optimal path

A*

- Can visit fewer nodes than BFS or Dijkstra
- Optimal if heuristic estimate is a lower-bound

