Fundamentals

CSE 326
Data Structures
Lecture 2

Mathematical Background

» Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations
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Powers of 2

* Many of the numbers we use will be powers
of 2
» Binary numbers (base 2) are easily
represented in digital computers
> each "bit"isaOorai
» 20=1, 21=2, 22=4, 23=8, 24=16, 28=2586, ...
> an n-bit wide field can hold 2" positive integers:
« 0<k<2n1
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Unsigned binary numbers

» Each bit position represents a power of 2
» For unsigned numbers in a fixed width field
> the minimum value is 0
> the maximum value is 2"-1, where n is the number
of bits in the field
+ Fixed field widths determine many limits
> 5 bits = 32 possible values (25 = 32)
> 10 bits = 1024 possible values (210 = 1024)
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Binary and Decimal
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Logs and exponents

+ Definition: log, x =y means x = 2¥
> the log of x, base 2, is the value y that gives x
=2y
> 8=25,s0l0g,8 =3
> 65536= 216, s0 109,65536 = 16
* Notice that log,x tells you how many bits
are needed to hold x values
> 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
> 109,256 = 8
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Floor and Ceiling

|_XJ Floor function: the largest integer < X

|27]=2 [-27]=-8 [2]=2

|VX—| Ceiling function: the smallest integer > X

[23]=3 [-23]=-2 [2]=2
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Facts about Floor and Ceiling

1. X-1<|[X]<X
2. X<[X]<X+1
3. [n2]+[n/2]=n if nisaninteger
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Example: log,x and tree depth

« 7 items in a binary tree, 3 =log,7J+1 levels
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Properties of logs (of the
mathematical kind)

» We will assume logs to base 2 unless
specified otherwise

* log AB =log A + log B

* Proof:
> A=2199,A and B=2/09,B
> AB = 2l0g,A « Dlog,B _ Dlog,A+log,B

> so log,AB = log,A + log,B

> note: log AB # log A+log B
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Other log properties

* log A/B=1logA—-logB

« log (AB) =B log A

* loglog X<log X< Xforall X>0
> log log X = Y means 22" =X

> log X grows slower than X
« called a “sub-linear” function
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Alogisalogis alog

« Any base x log is equivalent to base 2 log
within a constant factor
log,B =log,B
x°98 =B
(2Iog2x )\mngI = Dlog:B

log;x10g,8 _ olog;B

B — 2Iong

X = 2Iog2x

log,x log,B =log,B
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Arithmetic Series

N
o S(N)=1+2+..+N=>i

i=1
* The sumis
> S(1) =1
> S(2)=142=3
> §(3) =1+2+3 =6
N
. i= N(N2+1) Why is this formula useful?

i=1
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Algorithm Analysis

+ Consider the following program
segment:
x:= 0;
for i = 1 to N do
for j =1 to 1 do

x 1= x+ 1;

« What is the value of x at the end?
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Analyzing the Loop

« Total number of times x is incremented
is executed =

N
1+2+3+...=Zi=w
=

» Congratulations - You've just analyzed
your first program!
> Running time of the program is proportional
to N(N+1)/2 for all N
> O(N?3)
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Other Important Series

Y, N(N+DQ@N+1) N°
+ Sum of squares: Xi'=——— ="
i=1
« Sum of exponents: 3~ NV
i=l

» Geometric series:
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Mathematical Background

» Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations
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Motivation for Algorithm

Analysis
Suppose you are
given two algorithms =
A and B forsolvinga . Ta
problem é -
The running times & N
Ta(N) and Tg(N) of A ™ T
and B as a function of .| B
input size N are given —— %
Input Size N

Which is better?
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More Motivation
For large N, the running time of A and B

oo Now which
E o TA(N) = 50N algorithm would
] 2:: you choose?
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Asymptotic Behavior

» Asymptotic behavior refers to what
happens as as N — «, regardless of
what happens for small N

+ Performance for small input sizes may
matter in practice, if you are sure that
small N will be common forever

» We will compare algorithms based on
how they scale for large values of N
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Which Function Grows Faster?

n3 + 2n? vs. 100n% + 1000
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Which Function Grows Faster?

no-1! VS. log n
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Which Function Grows Faster?

log n
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Which Function Grows Faster?

5n3 VS. n!
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Which Function Grows Faster?
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Order Notation

» Mainly used to express upper bounds on time
of algorithms. “n” is the size of the input.

+ Examples
> 3n3+57n2+34=0(n?3)
> 10000n + 10 nlog, n = O(n log n)
> .00001 n? = O(n log n)

+ Order notation ignores constant factors and
low order terms.
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Big-O

 Def: f(n) = O(g(n)) if there exists
positive constants ¢ and n, such that for
all N > n,, f(N) < cg(N).
+ In other words, for large enough n, g is
always larger than f.
» So g is an upper bound. (f could be
much smaller than g.)
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161’ log,(10n*) +100n° = O(n’ log(n))

16n°log, (10n*) +100n*

« Eliminate = 16n"log, (10°)
low order = n’log,(10n)
terms = []0g8(10)+]0g8(n2)]
« Eliminate 2n310g8(10)+n310g8(n2)
constant = n’ log,(n”)

coefficients ="' 2log(m
= n’ logg(n)

=n log,(2)log(n)

3
=>n log(n)
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Some Basic Time Bounds

Constant time is O(1)

* Logarithmic time is O(log n)

* Linear time is O(n)

Quaderatic time is 0(n?)

« Cubic time is O(n3)

Polynomial time is O(n¥) for some k.

» Exponential time is O(c") for some ¢ > 1.
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Other asymptotics

* Big-Omega
» Big-Theta
Little-O

Limit formulation
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Conventions of Order Notation

Order notation is not symmetric: write 2n* + n = O(n?)
but never O(n®) =2n° +n

The expression O(f(n)) = O(g(n)) is equivalent to
f(n) = O(g(n))

The right-hand side is a "cruder" version of the left:
18n° = O(n?) = 0(n®) = O(2")
18n° = Q(n?) = Q(nlogn) = Q(n)
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Kinds of Analysis

« Asymptotic — uses order notation, ignores constant
factors and low order terms.

» Upper bound vs. lower bound
« Worst case — time bound valid for all inputs of length n.

« Average case —time bound valid on average — requires
a distribution of inputs.

« Amortized — worst case time averaged over a sequence
of operations.

« Others — best case, common case, cache miss
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Estimating Order by Plotting
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Log-Log Plot
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Property of Log/Log Plots

* On alinear plot, a linear function is a straight line

+ On a log/log plot, any polynomial function is a straight
linel
> The slope Ay/A x is the same as the exponent

Proof: Suppose y = cx*
Then logy = log(cx®)

logy =logc+klogx
i
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Mathematical Background

» Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations
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Analyzing Recursive
Programs

1. Express the running time T(n) as a
recursive equation

2. Solve the recursive equation

» For an upper-bound analysis, you can
optionally simplify the equation to
something larger

» For a lower-bound analysis, you can
optionally simplify the equation to
something smaller

1/5/05 Fundamentals - Lecture 2 40

Binary Search

function bfind(x:integer, a[]:integer array, i,Jj:integer)
{ if (j-i < 0) return -1;
m = (i+3j)/ 2;
if (x = a[m]) return m;
if (x < a[m]) then
return bfind(x, a, i, m-1);
else
return bfind(x, a, m+l, 3j); }
Call bfind(x,a,0,n-1) to get the result of binary search

What is the worst-case upper bound?
Okay, let's proveitis 6(log n)...
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Binary Search

function bfind(x:integer, a[]:integer array, i,j:integer)
{ if (j-i < 0) return -1;
m o= (i+3)/ 2;
if (x = a[m]) return m;
if (x < a[m]) then
return bfind(x, a, i, m-1);
else
return bfind(x, a, m+l, j); }
Introduce some constants...
b = time needed for base case
¢ = time needed to get ready to do a recursive call
n = j-i+1 is the size of the subproblem
Running time T(n) satisfies: T(1)=b
T(n)=T(n/2)+c
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Solving Recursive Equation
(by Repeated Substitution)

T(n)=T(n/2)+c substitute for T(n/2)
T(n)=T(n/4)+c+c

T(n)=T(n/4)+c+c substitute for T(n/4)
T(n)=T(n/8)+c+c+c

T(n)=T(n/2*)+ ke "inductive leap”
T(n)=T(n/2°°")+clogn choose k=log n
T(n)=T(n/n)+clogn

=T(1)+clogn= b+ clogn=O(logn)
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Solving Recursive Equations
by Induction

» Repeated substitution and telescoping
construct the solution

« If you know the closed form solution,
you can validate it by ordinary induction

 For the induction, may want to increase
n by a multiple (2n) rather than by n+1
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Inductive Proof

T(1)=b+clogli=b base case

Assume T(n)=b+clogn hypothesis

T(2n)=T(n)+c definition of T(n)
T(2n)=(b+clogn)+c by induction hypothesis

T(2n)=b+c((logn)+1)

T(2n) = b+c((logn) + (log2))

T(2n)=b+clog(2n) Q.E.D.

Thus: T(n) =6(logn)
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