Fundamentals

CSE 326
Data Structures
Lecture 2

Mathematical Background

» Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations

1/5/05 Fundamentals - Lecture 2 2

Powers of 2

* Many of the numbers we use will be powers
of 2
» Binary numbers (base 2) are easily
represented in digital computers
> each "bit"isaOorai
» 20=1, 21=2, 22=4, 23=8, 24=16, 28=2586, ...
> an n-bit wide field can hold 2" positive integers:
« 0<k<2n1

1/5/05 Fundamentals - Lecture 2 3

Unsigned binary numbers

» Each bit position represents a power of 2
» For unsigned numbers in a fixed width field
> the minimum value is 0
> the maximum value is 2"-1, where n is the number
of bits in the field
+ Fixed field widths determine many limits
> 5 bits = 32 possible values (25 = 32)
> 10 bits = 1024 possible values (210 = 1024)

1/5/05 Fundamentals - Lecture 2 4

Binary and Decimal

64
2

=256
=128
s=g

Decimaly,

3

2
2
26
2
2
2

9

N e R R L)
=
5]

[e N I L S P 2

I [S P (NS Py ()

1/5/05 Fundamentals - Lecture 2 5

Logs and exponents

+ Definition: log, x =y means x = 2¥
> the log of x, base 2, is the value y that gives x
=2y
> 8=25,s0l0g,8 =3
> 65536= 216, s0 109,65536 = 16
* Notice that log,x tells you how many bits
are needed to hold x values
> 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
> 109,256 = 8

1/5/05 Fundamentals - Lecture 2 6

2¥and log,x

1200

1000
gonff y=2°
600 _
x=y
400
x = 0:10
200 y o= 2.
plot (x
¥ = log,x hold on
0 plot (v,
0 200 400 600 800 1000 1200 plot (y,y
2¥and log,x

Floor and Ceiling

|_XJ Floor function: the largest integer < X

|27]=2 [-27]=-8 [2]=2

|VX—| Ceiling function: the smallest integer > X

[23]=3 [-23]=-2 [2]=2

1/5/05 Fundamentals - Lecture 2

Facts about Floor and Ceiling

1. X-1<|[X]<X
2. X<[X]<X+1
3. [n2]+[n/2]=n if nisaninteger

1/5/05 Fundamentals - Lecture 2 10

Example: log,x and tree depth

« 7 items in a binary tree, 3 =log,7J+1 levels

1/5/05 Fundamentals - Lecture 2 "

Properties of logs (of the
mathematical kind)

» We will assume logs to base 2 unless
specified otherwise

* log AB =log A + log B

* Proof:
> A=2199,A and B=2/09,B
> AB = 2l0g,A « Dlog,B _ Dlog,A+log,B

> so log,AB = log,A + log,B

> note: log AB # log A+log B

1/5/05 Fundamentals - Lecture 2 12

Other log properties

* log A/B=1logA—-logB

« log (AB) =B log A

* loglog X<log X< Xforall X>0
> log log X = Y means 22" =X

> log X grows slower than X
« called a “sub-linear” function

1/5/05 Fundamentals - Lecture 2

Alogisalogis alog

« Any base x log is equivalent to base 2 log
within a constant factor
log,B =log,B
x°98 =B
(2Iog2x)\mngI = Dlog:B

log;x10g,8 _ olog;B

B — 2Iong

X = 2Iog2x

log,x log,B =log,B

1/5/05 Fundamentals - Lecture 2

Arithmetic Series

N
o S(N)=1+2+..+N=>i

i=1
* The sumis
> S(1) =1
> S(2)=142=3
> §(3) =1+2+3 =6
N
. i= N(N2+1) Why is this formula useful?

i=1

1/5/05

Fundamentals - Lecture 2

Algorithm Analysis

+ Consider the following program
segment:
x:= 0;
for i = 1 to N do
for j =1 to 1 do

x 1= x+ 1;

« What is the value of x at the end?

1/5/05 Fundamentals - Lecture 2

Analyzing the Loop

« Total number of times x is incremented
is executed =

N
1+2+3+...=Zi=w
=

» Congratulations - You've just analyzed
your first program!
> Running time of the program is proportional
to N(N+1)/2 for all N
> O(N?3)

1/5/05 Fundamentals - Lecture 2

Other Important Series

Y, N(N+DQ@N+1) N°
+ Sum of squares: Xi'=——— ="
i=1
« Sum of exponents: 3~ NV
i=l

» Geometric series:

1/5/05

for large N
6 3 &

1
forlarge Nand k # -1
lk+11

N N+l _
3 _AM-1
=) A-1

Fundamentals - Lecture 2

Mathematical Background

» Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations

1/5/05 Fundamentals - Lecture 2 19

Motivation for Algorithm

Analysis
Suppose you are
given two algorithms =
A and B forsolvinga . Ta
problem é -
The running times & N
Ta(N) and Tg(N) of A ™ T
and B as a function of .| B
input size N are given —— %
Input Size N

Which is better?

1/5/05 Fundamentals - Lecture 2 20

More Motivation
For large N, the running time of A and B

oo Now which
E o TA(N) = 50N algorithm would
] 2:: you choose?

15

100 Tg(N) = N2

-

R R R R THE R R
1/5/05 Input Fsuinzdearr’:‘entals - Lecture 2 21

Asymptotic Behavior

» Asymptotic behavior refers to what
happens as as N — «, regardless of
what happens for small N

+ Performance for small input sizes may
matter in practice, if you are sure that
small N will be common forever

» We will compare algorithms based on
how they scale for large values of N

1/5/05 Fundamentals - Lecture 2 22

Which Function Grows Faster?

n3 + 2n? vs. 100n% + 1000

1/5/05 Fundamentals - Lecture 2 23

12000

10000

8000

6000

4000

2000

Which Function Grows Faster?

n3 + 2n2 vs. 100n% + 1000
Be+06 100n"2 1000 ——
Te+06 //
/
y
4e+06 /
3e+06 /
2e+06 /
B
_— =
1 2 3 4 5 6 7 8 9 10 0 20 40 60 BO 100 120 140 160 180 200
1/5/05 Fundamentals - Lecture 2 24

Which Function Grows Faster?

no-1! VS. log n

1/5/05 Fundamentals - Lecture 2 25

Which Function Grows Faster?

log n

1/5/05

0
8 9 10 0 2e¢17

Fundamentals - Lecture 2

Which Function Grows Faster?

5n3 VS. n!

1/5/05 Fundamentals - Lecture 2 27

Which Function Grows Faster?

16000

14000

12000

10000

8000

6000

4000

2000

0

5
5n VS. n!
-
// 3.5e+06
/ sevts
/

/ 20406
// 1.5e+06
e 500000

,// ,//

_ , .

1/5/05

1015 2 25 3 3.5

@ 45 s 12

Fundamentals - Lecture 2

Order Notation

» Mainly used to express upper bounds on time
of algorithms. “n” is the size of the input.

+ Examples
> 3n3+57n2+34=0(n?3)
> 10000n + 10 nlog, n = O(n log n)
> .00001 n? = O(n log n)

+ Order notation ignores constant factors and
low order terms.

1/5/05 Fundamentals - Lecture 2 29

Big-O

 Def: f(n) = O(g(n)) if there exists
positive constants ¢ and n, such that for
all N > n,, f(N) < cg(N).
+ In other words, for large enough n, g is
always larger than f.
» So g is an upper bound. (f could be
much smaller than g.)

1/5/05

Fundamentals - Lecture 2

30

161’ log,(10n*) +100n° = O(n’ log(n))

16n°log, (10n*) +100n*

« Eliminate = 16n"log, (10°)
low order = n’log,(10n)
terms = []0g8(10)+]0g8(n2)]
« Eliminate 2n310g8(10)+n310g8(n2)
constant = n’ log,(n”)

coefficients ="' 2log(m
= n’ logg(n)

=n log,(2)log(n)

3
=>n log(n)
1/5/05 Fundamentals - Cecture 2 31

Some Basic Time Bounds

Constant time is O(1)

* Logarithmic time is O(log n)

* Linear time is O(n)

Quaderatic time is 0(n?)

« Cubic time is O(n3)

Polynomial time is O(n¥) for some k.

» Exponential time is O(c") for some ¢ > 1.

1/5/05 Fundamentals - Lecture 2 32

Other asymptotics

* Big-Omega
» Big-Theta
Little-O

Limit formulation

1/5/05 Fundamentals - Lecture 2 33

Conventions of Order Notation

Order notation is not symmetric: write 2n* + n = O(n?)
but never O(n®) =2n° +n

The expression O(f(n)) = O(g(n)) is equivalent to
f(n) = O(g(n))

The right-hand side is a "cruder" version of the left:
18n° = O(n?) = 0(n®) = O(2")
18n° = Q(n?) = Q(nlogn) = Q(n)

1/5/05 Fundamentals - Lecture 2 34

Kinds of Analysis

« Asymptotic — uses order notation, ignores constant
factors and low order terms.

» Upper bound vs. lower bound
« Worst case — time bound valid for all inputs of length n.

« Average case —time bound valid on average — requires
a distribution of inputs.

« Amortized — worst case time averaged over a sequence
of operations.

« Others — best case, common case, cache miss

1/5/05 Fundamentals - Lecture 2 35

Estimating Order by Plotting

5,000

4,500 - ‘

4,000 Pt

3,500 1 —e— O(n"2) algorithm

3,000 1= —=— O(n) algorithm

2,500 -

2,000 -

1,500

1,000 P
500 +

0 —— 1

seconds

S s, 7
0 0, 0 .00,
00, 00, 200, 0’000

N

1/5/05 Fundamentals - Lecture 2 36

Log-Log Plot

_ slope = 2

10,000 p =
1,000 -)

—e— 0O(n"2) algorithm /

100
10 —=—O(n) algorithm /

seconds
-

R b £

Property of Log/Log Plots

* On alinear plot, a linear function is a straight line

+ On a log/log plot, any polynomial function is a straight
linel
> The slope Ay/A x is the same as the exponent

Proof: Suppose y = cx*
Then logy = log(cx®)

logy =logc+klogx
i

1/5/05 undamentals - Lecture 2 38

Mathematical Background

» Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations

1/5/05 Fundamentals - Lecture 2 39

Analyzing Recursive
Programs

1. Express the running time T(n) as a
recursive equation

2. Solve the recursive equation

» For an upper-bound analysis, you can
optionally simplify the equation to
something larger

» For a lower-bound analysis, you can
optionally simplify the equation to
something smaller

1/5/05 Fundamentals - Lecture 2 40

Binary Search

function bfind(x:integer, a[]:integer array, i,Jj:integer)
{ if (j-i < 0) return -1;
m = (i+3j)/ 2;
if (x = a[m]) return m;
if (x < a[m]) then
return bfind(x, a, i, m-1);
else
return bfind(x, a, m+l, 3j); }
Call bfind(x,a,0,n-1) to get the result of binary search

What is the worst-case upper bound?
Okay, let's proveitis 6(log n)...

1/5/05 Fundamentals - Lecture 2 41

Binary Search

function bfind(x:integer, a[]:integer array, i,j:integer)
{ if (j-i < 0) return -1;
m o= (i+3)/ 2;
if (x = a[m]) return m;
if (x < a[m]) then
return bfind(x, a, i, m-1);
else
return bfind(x, a, m+l, j); }
Introduce some constants...
b = time needed for base case
¢ = time needed to get ready to do a recursive call
n = j-i+1 is the size of the subproblem
Running time T(n) satisfies: T(1)=b
T(n)=T(n/2)+c

1/5/05 Fundamentals - Lecture 2 42

Solving Recursive Equation
(by Repeated Substitution)

T(n)=T(n/2)+c substitute for T(n/2)
T(n)=T(n/4)+c+c

T(n)=T(n/4)+c+c substitute for T(n/4)
T(n)=T(n/8)+c+c+c

T(n)=T(n/2*)+ ke "inductive leap”
T(n)=T(n/2°°")+clogn choose k=log n
T(n)=T(n/n)+clogn

=T(1)+clogn= b+ clogn=O(logn)

1/5/05 Fundamentals - Lecture 2 43

Solving Recursive Equations
by Induction

» Repeated substitution and telescoping
construct the solution

« If you know the closed form solution,
you can validate it by ordinary induction

 For the induction, may want to increase
n by a multiple (2n) rather than by n+1

1/5/05 Fundamentals - Lecture 2 44

Inductive Proof

T(1)=b+clogli=b base case

Assume T(n)=b+clogn hypothesis

T(2n)=T(n)+c definition of T(n)
T(2n)=(b+clogn)+c by induction hypothesis

T(2n)=b+c((logn)+1)

T(2n) = b+c((logn) + (log2))

T(2n)=b+clog(2n) Q.E.D.

Thus: T(n) =6(logn)

1/5/05 Fundamentals - Lecture 2 45

