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Binomial Queues

CSE 326

Data Structures

Lecture 15
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Reading

• Reading 
› Section 6.8, 11.2
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Merging heaps

• Binary Heap is a special purpose hot rod

› FindMin, DeleteMin and Insert only

› does not support fast merges of two heaps

• For some applications, the items arrive in 
prioritized clumps, rather than individually

• Is there somewhere in the heap design that 
we can give up a little performance so that we 

can gain faster merge capability?
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Binomial Queues

• Binomial Queues are designed to be merged 

quickly with one another

• Using pointer-based design we can merge 

large numbers of nodes at once by simply 
pruning and grafting tree structures

• More overhead than Binary Heap, but the 

flexibility is needed for improved merging 
speed
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Worst Case Run Times
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Binomial Queues

• Binomial queues give up simplicity in order to 
provide O(log N) merge performance

• A binomial queue is a collection (or forest) of 
heap-ordered trees

› Not just one tree, but a collection of trees 

› each tree has a defined structure and capacity

› each tree has the familiar heap-order property
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Binomial Queue with 5 Trees
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Structure Property

• Each tree contains two 
copies of the previous tree

› the second copy is attached at 
the root of the first copy

• The number of nodes in a 
tree of depth d is exactly 2d
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Powers of 2

• Any number N can be represented in 
base 2

› A base 2 value identifies the powers of 2 
that are to be included
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Numbers of nodes

• Any number of entries in the binomial 
queue can be stored in a forest of 
binomial trees

• Each tree holds the number of nodes 
appropriate to its depth, ie 2d nodes

• So the structure of a forest of binomial 
trees can be characterized with a single 
binary number
› 1002 → 1·22 + 0·21 + 0·20 = 4 nodes

Structure Examples
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What is a merge?

• There is a direct correlation between

› the number of nodes in the tree

› the representation of that number in base 2

› and the actual structure of the tree

• When we merge two queues, the number of 
nodes in the new queue is the sum of N1+N2

• We can use that fact to help see how fast 
merges can be accomplished
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Example 1.

Merge BQ.1 and 
BQ.2

Easy Case.

There are no 
comparisons and 
there is no 
restructuring.
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Example 2.

Merge BQ.1 and BQ.2

This is an add with a 
carry out.  

It is accomplished with 
one comparison and 
one pointer change:  
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Merge BQ.1 and BQ.2

Part 1 - Form the 
carry.
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Part 2 - Add the existing 
values and the carry.
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Merge Algorithm

• Just like binary addition algorithm

• Assume trees X0,…,Xn and Y0,…,Yn are 
binomial queues 
› Xi and Yi are of type Bi or null

C0 := null; //initial carry is null//

for i = 0 to n do

combine Xi,Yi, and Ci to form Zi and new Ci+1
Zn+1 := Cn+1
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Exercise
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O(log N) time to Merge

• For N keys there are at most �log2 N�
trees in a binomial forest.

• Each merge operation only looks at the 

root of each tree.

• Total time to merge is O(log N).
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Insert

• Create a single node queue B0 with 

the new item and merge with 
existing queue

• O(log N) time
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DeleteMin

1. Assume we have a binomial forest X0,…,Xm

2. Find tree Xk with the smallest root 

3. Remove Xk from the queue 

4. Remove root of Xk (return this value) 

› This yields a binomial forest Y0, Y1, …,Yk-1.  

5. Merge this new queue with remainder of the 

original (from step 3)

• Total time = O(log N)
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Implementation

• Binomial forest as an array of multiway trees

› FirstChild, Sibling pointers
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DeleteMin Example

1 Return this

0    1   2   3    4   5    6   7

5 2

9

1

4710

12 138

15

0    1   2   3    4   5    6   7

5 2

9 4710

12 138

15

3/2/05 Binomial Queues - Lecture 15 24

0    1   2   3    4   5    6   7

5 2

9

0    1   2   3    4   5    6   7

5 2

9

0    1   2   3    4   5    6   7
New forest  

Old forest  

4710

12 138

15

4710

12 138

15



5

3/2/05 Binomial Queues - Lecture 15 25
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Why Binomial?
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Other Priority Queues

• Leftist Heaps 
› O(log N) time for insert, deletemin, merge

• Skew Heaps
› O(log N) amortized time for insert, 

deletemin, merge

• Calendar Queues
› O(1) average time for insert and deletemin

› Assuming insertions are “random”
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Exercise Solution
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