
1

B-Trees

CSE 326

Data Structures

Lecture 10

2/3/05 B-Trees - Lecture 10 2

Disk vs. Memory

• Disks many times slower than memory:
› Processor measured in GH = 109 cycles per

second

› Main memory measured in microsec. = 106 per
second

› Disk seek measured in miliseconds = 103 per
second

• i.e. ~ 1 million instructions per disk lookup

• Measuring runtime by pointer lookups
meaningless if data can’t fit in main memory

2/3/05 B-Trees - Lecture 10 3

Trees on disk

• Each pointer lookup means seeking the

disk

• Want as shallow a tree as possible

• Balanced binary tree with N nodes has

height ________?

• Balanced M-ary tree with N nodes has
height ________?

2/3/05 B-Trees - Lecture 10 4

M-ary trees

kM-1. ki-1
kik1

2/3/05 B-Trees - Lecture 10 5

N-ary trees

• In the limit, branching factor of N gives

height 1

› Just gives linear array, obviously not good

• What should we use in practice?

• Just as caches read in a block at a time,
disks read in a block at a time.

2/3/05 B-Trees - Lecture 10 6

Example

• 1k byte page

• Key 8 bytes, pointer 4 bytes

• (M-1)8 + 4M = 1024

12 M = 1032

M = �1032/12� = 86

2

2/3/05 B-Trees - Lecture 10 7

B-Trees are multi-way search trees commonly used in database
systems or other applications where data is stored externally on

disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.

2. All nonleaf nodes (except the root) have between �M/2�
and M children.

3. All leaves are at the same depth.

All data records are stored at the leaves.

Leaves store between �M/2� and M data records.
Internal nodes only used for searching.

B-Trees

2/3/05 B-Trees - Lecture 10 8

• B-tree of order 3 has 2 or 3 children per

node

Example

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

2/3/05 B-Trees - Lecture 10 9

B-Tree Details

Each (non-leaf) internal node of a B-tree has:

› Between �M/2� and M children.

› up to M-1 keys k1 < k2 < ... < kM-1

Keys are ordered so that:
k1 < k2 < ... < kM-1

kM-1. ki-1 kik1

2/3/05 B-Trees - Lecture 10 10

B-Tree Details

Each leaf node of a B-tree has:

› Between �M/2� and M keys and pointers.

Keys are ordered so that:
k1 < k2 < ... < kM-1

kM. ki-1 kik1

Keys point to

data on other
pages.

2/3/05 B-Trees - Lecture 10 11

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the i-th child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 ≤ Ti < ki

ki-1 is the smallest key in Ti

All keys in first subtree T1 < k1

All keys in last subtree TM ≥ kM-1

k1

TTii

. kki-1 kkii

TTMTT11

kkM-1

.

2/3/05 B-Trees - Lecture 10 12

Example: Searching in B-trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3
children)

• Examples: Search for 9, 14, 12

• Note: If leaf nodes are connected as a Linked List, B-
tree is called a B+ tree – Allows sorted list to be
accessed easily

- means empty slot

3

2/3/05 B-Trees - Lecture 10 13

Inserting into B-Trees

• Insert X: Do a Find on X and find appropriate leaf node
› If leaf node is not full, fill in empty slot with X

• E.g. Insert 5

› If leaf node is full, split leaf node and adjust parents up to root
node

• E.g. Insert 9 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

2/3/05 B-Trees - Lecture 10 14

Insert Example

13:-

6:11

3 4 6 7 11 12 13 14 17 18

17:-

8 9

2/3/05 B-Trees - Lecture 10 15

Insert Example

13:-

6:-

3 4 6 7 11 12 13 14 17 18

17:-

8 9

11:-

2/3/05 B-Trees - Lecture 10 16

Insert Example

8:13

6:-

3 4 6 7 11 12 13 14 17 18

17:-

8 9

11:-

2/3/05 B-Trees - Lecture 10 17

Deleting From B-Trees

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11

› Leaf underflows and can’t borrow – merge nodes, delete
parent

• E.g. 17 13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

2/3/05 B-Trees - Lecture 10 18

Delete Example

13:-

6:11

3 4 6 7 8 11 12 13 14 18

17:-

4

2/3/05 B-Trees - Lecture 10 19

Delete Example

13:-

6:11

3 4 6 7 8 11 12 13 14 18

-:-

2/3/05 B-Trees - Lecture 10 20

Delete Example

11:-

6:-

3 4 6 7 8 11 12 13 14 18

13:-

2/3/05 B-Trees - Lecture 10 21

Run Time Analysis of B-Tree
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to

search

› Each internal node has between �M/2� and M
children

› Depth of B-Tree storing N items is O(log �M/2�N)

• Example: M = 86
› log43N = log2 N / log2 43 =.184 log2 N

› log43 1,000,000,000 = 5.51
2/3/05 B-Trees - Lecture 10 22

Summary of Search Trees

• Problem with Search Trees: Must keep tree balanced
to allow

› fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced

• Splay trees: Repeated Find operations produce
balanced trees on average

• Multi-way search trees (e.g. B-Trees): More than two
children

› per node allows shallow trees; all leaves are at the
same depth

› keeping tree balanced at all times

