
CSE326 Homework #4

Due: Wednesday July 20.

Note: Each time you are asked to give an algorithm or implement a function,
you should give an explanation of how the algorithm works and why it is correct,
as well as pseudocode.

1. (Recommended, but don’t turn in.) Show the result of inserting 10, 15,
12, 3, 1, 13, 4, 17 and 8 into the following initially empty search tree data
structures.

(a) Binary search tree (unbalanced)

(b) AVL tree

(c) Splay tree

(d) B-tree with M=3, L=2

(e) B-tree with M=3, L=3

2. In this problem we’ll look at adding an additional operation to the Search
ADT. The operation is findKth(tree T, integer k), which returns
the node with rank k, i.e. the kth smallest node in the tree. (So findKth(
T, 1) is the standard findMin() function.) findKth should run in time
O(log n), where n is the number of nodes in the tree. To efficiently imple-
ment the new Search ADT with a binary search tree data structure we’ll
need to store additional information at each node.

(a) The first thing you might try is to store the rank of each node along
with the key. How could you implement findKth with this informa-
tion? What is the problem with this approach?

(b) Instead, we’ll store the number of descendants of each node. Given
the rank of a node v and descendant information for all nodes, how
can we determine the rank of v’s left and right children? How can
we determine the rank of the root node? Using this, give an imple-
mentation of findKth.

(c) We’re not done yet, since we haven’t said how to keep the descendant
information up to date. Describe how to change the insert and
delete functions to maintain descendant information.

1

3. Let T1 and T2 be sets such that ∀x ∈ T1, y ∈ T2, x < y. Then we call
T1 ∪ T2 the concatenation of T1 and T2. If T1 and T2 are represented as
binary search trees then the concatenation is easy to implement: simply
find the max of T1 and make it the new root, with the modified T1 as
the left child and T2 as the right child. For AVL trees things are not so
simple–the heights of the two trees could be very different, so the resulting
tree won’t be balanced. Instead we must somehow insert one tree inside
the other in a way that maintains balance.

Design an algorithm to concatenate two AVL trees. The algorithm should
run in time O(log n), and in particular, should require only one single or
double rotation to restore balance. Be sure to argue why your algorithm
maintains the search property and the AVL property.

4. Imagine that you have been asked to to implement a new IRS database.
There are 100,000,000 records, each of which take an average of 2,000
bytes. The records are keyed with a Social Security Number which is 4
bytes. The computer that you will be using has 2,048 byte pages and pages
are addressed with 4 byte integers. Assume that a B-tree node completely
as possible fills a page. This may means that leaves may hold more or less
keys than internal nodes depending on what data is stored on the leaves.
Assume that the computer has 16 MB of memory that is usable for storing
all or part of a search structure. For the B-tree, disk addresses are used
for pointers, and a 2 byte integer is used to keep track of the length of the
active area in the B-tree node. The leaves of the B-tree contain pointers
to the actual records. We assume that the nodes, other than the root, of
the B-tree are about 3/4-th full on average.

(a) Calculate the maximum number of children (M) that an internal node
of the B-tree can have. Calculate the maximum number of entries
(L) a leaf of the B-tree can have.

(b) Calculate the height of the B-tree with that order so that all the
100,000,000 records can be accessed. About how many children does
the root have.

(c) Calculate how many levels of the B-tree can fit into the memory of
the computer. Several full levels and the portion of one level will fit
into memory.

(d) Calculate how many disk accesses in the worst case are necessary
to find a specific record using this search structure. How many on
average?

2

