CSE326 Homework #2

Due: Wednesday, July 6

1. Suppose we have an unsorted array A[l...n] of integers with possible
duplicates. Design a version of Quicksort that instead of partioning into
two sets, one whose elements are less than or equal to the pivot and a
second whose elements are greater than or equal to the pivot, the new
algorithm partitions into three sets, one whose elements are strictly less
than the pivot, a second whose elements are stricktly more than the pivot,
and a third whose elements are equal to the pivot. Your algorithm should
be in-place. One idea is that in the partitioning phase as we move the
two pointers i and j toward each other we maintain the invariant that the
array looks like:

eleIIleIltS equal t() prOt elelllellts 1eSS tllan prOt unkn()Wn elements
.
EIElllellts gI eELtEI t}la‘ll pl v Ot eleIIleIlt’b equa‘l to pl v Ot

When there are no unknown elements left then the elements can be rear-
ranged to be of this form:

[elements less than pivot][elements equal to pivot][elements greater than
pivot)

(a) Design the Quicksort and Partition algorithms that implements this
idea.

(b) Show that your Quicksort algorithm runs in worst case time O(dn)
where d is the number of distinct keys in the array.

2. There are two strategies for handling small arrays in Quicksort. The first
strategy is the one described in class. Apply Quicksort recursively until
the array are smaller than a CUTOFF size, then call Insertionsort to sort
the small array. A second strategy is to apply Quicksort recursively unitl
the array is smaller than the CUTOFF, then return. In this strategy after
Quicksort(A[],1,n) is completed, the array A[l,n] is almost sorted. Now
call Insertionsort(A[],1,n) to finish the job. Since A[l..n] is almost sorted
then Insertionsort should do a good job.

(a) Explain why the number of comparisons executed by Insertionsort in
the two strategies is approximately the same. Which strategy uses
slightly more and why?



(b) Explain why the second strategy executes fewer instructions than the
first.

(c) Explain why the second strategy has more cache misses than the first
when n is very large.

(d) If 8 integers fit in a memory block and n is very large, then about how
many more cache misses are there in the second strategy as compared
to the first strategy. Explain your answer.

3. Suppose you are given as input n positive integers and a number k. Write
an algorithm to determine if there are any four of them, repetitions al-
lowed, that sum to k. Your algorithm should run in time O(n?logn).
Partial credit will be given if your algorithm is correct but takes longer
than O(n?logn). As an example, if n = 7, the input numbers are 6, 1, 7,
12, 5, 2, 14 and k = 15, the answer should be yes because 64+5+2+2 = 15.

Hint #1: First solve the simpler problem that determines if there are any
two numbers that sum to k.

Hint #2: Sum of four numbers is the sum of two pairs of numbers.



