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Algorithm Performance 
Factors

• Algorithm choices (asymptotic running time)
› O(n2) or O(n log n) …

• Data structure choices
› List or Arrays

• Language and Compiler
› C, C++, Java, Fortran

• Memory performance
› How near is the data to the processor
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Moore’s Law
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Processor-Memory 
Performance Gap

• x86 CPU speed (100x over 10 years)
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Program Model of Memory I
memory

Character

Integer

Double

32 bit = 4 byte
words

0
4
8

12
16
20
24
28
32
36
40

address
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Program Model of Memory II
Array A[0,9] of integers

A

A + 40 

Record = struct = data object
a.data : double
a.next : pointer or reference

a.data

a.next

A pointer or reference is simply 
an integer that represents a
memory address
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Memory Model vs. Reality

• The program memory model is very simple 
and elegant

• The reality is not.
• Physical memory is organized in a hierarchy. 

› Accessing memory close to the processor is fast
› Accessing memory far from the processor is 

slower

• Caching allows for accessed data to be 
moved closer to the processor.  
› There is a win if that data is accessed again
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Levels in the Memory 
Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-
cache 8-128KB

Off-chip cache; 128KB - 4MB

Main memory; up to 10GB

Secondary memory; many GB

Archival storage

SRAM; a few ns

SRAM/DRAM; 
≈ 10-20 ns 

DRAM; 40-100 ns

a few 
milliseconds

Memory Performance of 
Algorithms - Lecture 4

9

The Cache

direct mapped cache

memory

Cache hit : data accessed
is in the cache.
Cache miss : data accessed
Is not in the cache
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Memory Blocks

Addressable unit, usually
a byte

Memory block – unit of memory
transferred as a whole from
memory to cache.  Sometimes
called “cache line”. Usually, 32 
64 bytes (but growing in size).
Memory block size usually greater
than word size
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Why Memory Blocks

• Time to transfer x bytes is given by
T(x) = a + bx.  (a is latency, b ∼ 1/bandwidth)

• Because a is large relative to b, it pays 
to transfer more than one byte at a time.
› The hope is that bytes near the accessed 

byte will be accessed soon – good spatial 
locality.
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Locality

• Spatial locality : addresses near a 
recently accessed byte are accessed 
also.

• Temporal locality : the same address 
that was accessed recently is accessed 
again.
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Examples of Locality

• Good spatial locality
› Quicksort – the array is scanned

• Poor spatial locality
› Binary search – jump around the array 

i               j
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Examples of locality

• Good temporal locality
› For loop index  i in a tight loop.

for i = 1 to n do { …}

• Poor temporal locality
› Repeated long scans that exceeds the cache size, 

like in iterative merge sort.

cache size
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Classifying Cache Misses

• Compulsory misses – first time a block is 
accessed
› Can never be avoided

• Capacity misses – data structure does not fit 
in cache 
› Can be avoided by algorithmic design.

• Conflict misses – several accessed blocks 
map to the same location in cache
› Conflict misses are not much of a problem 

because modern caches are set associative.
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Set Associative Cache

Two-way set associative cache

memory

• Two blocks of the cache can hold
blocks from the same parts of memory

• Replacement policy needed.

• Reduces conflict misses
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Cache Misses for Scans

Not in cacheIn cache

1/B misses per access where B is number of access per line
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Repeated Long Scans
Cache size

1st scan

2nd scan
beginning
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Repeated Long Scans

• Have good spatial locality
• Poor temporal locality
• If there are B accesses per memory 

block then 1/B of the accesses are 
cache misses.
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Prefetching

• Some computers have prefetching
instruction that can be inserted by the  
compiler.

• If the compiler notices long scans then:
› Prefetches execute in parallel with other 

instructions to load the cache.

› Cache misses are avoided.
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Iterative Mergesort

copy

Cache sizeCache miss
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Recursive Mergesort
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Recursive Mergesort

Cache size Cache miss
Cache hit
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Multi-mergesort
Cache size

sort sort
sort sort

Multi-merge
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sort in-place (if needed)

merge

merge

merge

merge

merge

merge

sort in-place

merge

1/2 cache size

Multi-Mergesort
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sort in-place (if needed)

merge

merge

merge

merge

merge

merge

sort in-place

merge

Multi-Mergesort Cache Behavior

1/2 cache size
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Quicksort
Cache size Cache miss

Cache hit
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Sorting Study from 1996

• Compared sorting algorithms
› Cache misses
› Instruction count

› Execution time

• The study is still valid today, because 
the gap between processor speed and 
memory speed is even larger.
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Algorithms

• Iterative mergesort
• Multi-mergesort
• Quicksort
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Cache Misses

Iterative merge

Quicksort
Multi-merge
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Instructions

Iterative merge

Quicksort

Multi-merge
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Execution Time

Iterative merge

Quicksort
Multi-merge
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Notes on Memory 
Performance

• Memory performance may matter.
• Tips

› Sacrifice instructions to get better cache 
performance.

› Smaller memory footprint is good.
› Divide and conquer is good.
› Processing data into cache sized pieces is good.
› Fully utilize memory blocks if possible

• Short scans are good.
• Multiway trees are good.
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External Memory Sort

• Memory bottleneck even worse for disk
• If input too big to fit in main memory, 

regular sorting algorithms are too slow
• Whole subject of external sorting
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Disks

• In-memory sorting uses random access 
model of memory. Disks are sequential.

• A movable head over a rotating platter
• Reading sequentially fast
• Seeking to new location slow
• Sort time dominated by number of 

seeks
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One external sort model

• With only 1 sequential access memory, 
sorting takes Ω(N2)

• We’ll use a model with 4 disks.
• Each can be read concurrently
• Call disks A1, A2, B1, B2
• Say main memory can hold M elements
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A simple algorithm

• Data initially on A1
• Sort block of size M in memory, writing 

first half to B1, second half to B2
• Now merge half of B1 and B2 onto A1, 

and the other half to A2
• Blocks are now of size 2M
• Repeat for log(N/M) steps.


