Memory Performance of
Algorithms

CSE 326
Data Structures
Lecture 4

Algorithm Performance
Factors

Algorithm choices (asymptotic running time)
> O(n?) or O(nlogn) ...
Data structure choices
> List or Arrays
» Language and Compiler
> C, C++, Java, Fortran
* Memory performance
> How near is the data to the processor
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Processor-Memory
Performance Gap
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Program Model of Memory |

address MeMOYY

2 32 bit = 4 byte
Character [ ] 8 words
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Program Model of Memory I

Array A[0,9] of integers Record = struct = data object
a.data : double
a.next : pointer or reference

A

a.data

a.next

A pointer or reference is simply
an integer that represents a
memory address

A +40
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Memory Model vs. Reality

« The program memory model is very simple
and elegant

* The reality is not.
¢ Physical memory is organized in a hierarchy.

> Accessing memory close to the processor is fast
> Accessing memory far from the processor is
slower
¢ Caching allows for accessed data to be
moved closer to the processor.
> There is a win if that data is accessed again
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Levels in the Memory
Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-
cache 8-128KB

SRAM; a few ns

SRAM/DRAM; Off-chip cache; 128KB - 4MB
=10-20 ns

DRAM; 40-100 ns Main memory; up to 10GB

afew
milliseconds

Secondary memory; many GB

Archival storage

Memory Performance of 8
Algorithms - Lecture 4

The Cache

memory

direct mapped cache ||

Cache hit : data accessed
is in the cache.

Cache miss : data accessed
Is not in the cache
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Memory Blocks

D Addressable unit, usually
a byte

CIITTTITT

Memory block — unit of memory
transferred as a whole from
memory to cache. Sometimes
called “cache line". Usually, 32

64 bytes (but growing in size).
Memory block size usually greater
than word size
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Why Memory Blocks

» Time to transfer x bytes is given by
T(x) =a+ bx. (ais latency, b (01/bandwidth)
e Because a is large relative to b, it pays
to transfer more than one byte at a time.

> The hope is that bytes near the accessed
byte will be accessed soon — good spatial
locality.
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Locality

e Spatial locality : addresses near a
recently accessed byte are accessed
also.

e Temporal locality : the same address
that was accessed recently is accessed
again.
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Examples of Locality

« Good spatial locality
> Quicksort — the array is scanned

I [P

« Poor spatial locality
> Binary search — jump around the array

v

-
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Examples of locality

* Good temporal locality
> For loop index i in a tight loop.

fori=1tondo{...}

* Poor temporal locality

> Repeated long scans that exceeds the cache size,
like in iterative merge sort.

\
[ ] cachesize
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Classifying Cache Misses

« Compulsory misses — first time a block is
accessed
> Can never be avoided

« Capacity misses — data structure does not fit
in cache
> Can be avoided by algorithmic design.

< Conflict misses — several accessed blocks
map to the same location in cache

> Conflict misses are not much of a problem
because modern caches are set associative.

.
@
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Set Associative Cache

memory

Two-way set associative cache

R

« Two blocks of the cache can hold

blocks from the same parts of memory

« Replacement policy needed.

» Reduces conflict misses
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Cache Misses for Scans

In cache [N Not in cache HEEN

I

1/B misses per access where B is number of access per line

-
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Repeated Long Scans

[ Cachesize
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Repeated Long Scans

» Have good spatial locality
» Poor temporal locality

« If there are B accesses per memory
block then 1/B of the accesses are
cache misses.
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Prefetching

e Some computers have prefetching
instruction that can be inserted by the
compiler.

« If the compiler notices long scans then:

> Prefetches execute in parallel with other
instructions to load the cache.

> Cache misses are avoided.
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— Cache miss [ Jcachesize
Iterative Mergesort
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Recursive Mergesort
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Recursive Mergesort

it N N [ P TTT]
L PRITTTTITTITTITTIT I I
i s N I B I R I R Y I PP T
[ PRI TTTITTTITTT] I I [P
[ [ PRITTTTITTITT I I —r
[ g s B B I R R R Y E— —
 E— — I I I R O i ]
[ PRITTTITT | ]
[ Jcachesize — Cache miss
—— Cache hit
Memory Performance of 23

Algorithms - Lecture 4

Multi-mergesort

[ ] Cache size

sort l t
— sort

sort
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[
O
Multi-merge /
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Multi-Mergesort

4 sortin-place (if needed)
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Sorting Study from 1996

e Compared sorting algorithms
> Cache misses
> Instruction count
> Execution time

e The study is still valid today, because
the gap between processor speed and
memory speed is even larger.
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Algorithms
* Iterative mergesort
e Multi-mergesort
* Quicksort
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Cache Misses

Iterative merge
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cache misses per key

Quicksort
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Instructions
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Execution Time
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Notes on Memory
Performance

. Memory performance may matter.
¢ Tips
> Sacrifice instructions to get better cache
performance.
Smaller memory footprint is good.
Divide and conquer is good.
Processing data into cache sized pieces is good.
Fully utilize memory blocks if possible

« Short scans are good.
« Multiway trees are good.

v v v v
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External Memory Sort

* Memory bottleneck even worse for disk

« If input too big to fit in main memory,
regular sorting algorithms are too slow

* Whole subject of external sorting
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Disks

* In-memory sorting uses random access
model of memory. Disks are sequential.

* A movable head over a rotating platter
* Reading sequentially fast
» Seeking to new location slow

 Sort time dominated by number of
seeks
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One external sort model

* With only 1 sequential access memory,
sorting takes Q(N?)

» We’'ll use a model with 4 disks.

e Each can be read concurrently

« Call disks A1, A2, B1, B2

e Say main memory can hold M elements
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A simple algorithm

Data initially on A1

Sort block of size M in memory, writing
first half to B1, second half to B2

Now merge half of B1 and B2 onto Al,
and the other half to A2

Blocks are now of size 2M
Repeat for log(N/M) steps.
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