
1

Memory Performance of
Algorithms

CSE 326
Data Structures

Lecture 4

Memory Performance of
Algorithms - Lecture 4

2

Algorithm Performance
Factors

• Algorithm choices (asymptotic running time)
› O(n2) or O(n log n) …

• Data structure choices
› List or Arrays

• Language and Compiler
› C, C++, Java, Fortran

• Memory performance
› How near is the data to the processor

Memory Performance of
Algorithms - Lecture 4

3

Moore’s Law

Memory Performance of
Algorithms - Lecture 4

4

Processor-Memory
Performance Gap

• x86 CPU speed (100x over 10 years)

10

100

1000

1
89 91 93 95 97 99 01

“Memory gap”

“Memory wall”

x x

x
x x

x
o

o

o
o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

Memory Performance of
Algorithms - Lecture 4

5

Program Model of Memory I
memory

Character

Integer

Double

32 bit = 4 byte
words

0
4
8

12
16
20
24
28
32
36
40

address

Memory Performance of
Algorithms - Lecture 4

6

Program Model of Memory II
Array A[0,9] of integers

A

A + 40

Record = struct = data object
a.data : double
a.next : pointer or reference

a.data

a.next

A pointer or reference is simply
an integer that represents a
memory address

2

Memory Performance of
Algorithms - Lecture 4

7

Memory Model vs. Reality

• The program memory model is very simple
and elegant

• The reality is not.
• Physical memory is organized in a hierarchy.

› Accessing memory close to the processor is fast
› Accessing memory far from the processor is

slower

• Caching allows for accessed data to be
moved closer to the processor.
› There is a win if that data is accessed again

Memory Performance of
Algorithms - Lecture 4

8

Levels in the Memory
Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-
cache 8-128KB

Off-chip cache; 128KB - 4MB

Main memory; up to 10GB

Secondary memory; many GB

Archival storage

SRAM; a few ns

SRAM/DRAM;
≈ 10-20 ns

DRAM; 40-100 ns

a few
milliseconds

Memory Performance of
Algorithms - Lecture 4

9

The Cache

direct mapped cache

memory

Cache hit : data accessed
is in the cache.
Cache miss : data accessed
Is not in the cache

Memory Performance of
Algorithms - Lecture 4

10

Memory Blocks

Addressable unit, usually
a byte

Memory block – unit of memory
transferred as a whole from
memory to cache. Sometimes
called “cache line”. Usually, 32
64 bytes (but growing in size).
Memory block size usually greater
than word size

Memory Performance of
Algorithms - Lecture 4

11

Why Memory Blocks

• Time to transfer x bytes is given by
T(x) = a + bx. (a is latency, b ∼ 1/bandwidth)

• Because a is large relative to b, it pays
to transfer more than one byte at a time.
› The hope is that bytes near the accessed

byte will be accessed soon – good spatial
locality.

Memory Performance of
Algorithms - Lecture 4

12

Locality

• Spatial locality : addresses near a
recently accessed byte are accessed
also.

• Temporal locality : the same address
that was accessed recently is accessed
again.

3

Memory Performance of
Algorithms - Lecture 4

13

Examples of Locality

• Good spatial locality
› Quicksort – the array is scanned

• Poor spatial locality
› Binary search – jump around the array

i j

Memory Performance of
Algorithms - Lecture 4

14

Examples of locality

• Good temporal locality
› For loop index i in a tight loop.

for i = 1 to n do { …}

• Poor temporal locality
› Repeated long scans that exceeds the cache size,

like in iterative merge sort.

cache size

Memory Performance of
Algorithms - Lecture 4

15

Classifying Cache Misses

• Compulsory misses – first time a block is
accessed
› Can never be avoided

• Capacity misses – data structure does not fit
in cache
› Can be avoided by algorithmic design.

• Conflict misses – several accessed blocks
map to the same location in cache
› Conflict misses are not much of a problem

because modern caches are set associative.

Memory Performance of
Algorithms - Lecture 4

16

Set Associative Cache

Two-way set associative cache

memory

• Two blocks of the cache can hold
blocks from the same parts of memory

• Replacement policy needed.

• Reduces conflict misses

Memory Performance of
Algorithms - Lecture 4

17

Cache Misses for Scans

Not in cacheIn cache

1/B misses per access where B is number of access per line
Memory Performance of
Algorithms - Lecture 4

18

Repeated Long Scans
Cache size

1st scan

2nd scan
beginning

4

Memory Performance of
Algorithms - Lecture 4

19

Repeated Long Scans

• Have good spatial locality
• Poor temporal locality
• If there are B accesses per memory

block then 1/B of the accesses are
cache misses.

Memory Performance of
Algorithms - Lecture 4

20

Prefetching

• Some computers have prefetching
instruction that can be inserted by the
compiler.

• If the compiler notices long scans then:
› Prefetches execute in parallel with other

instructions to load the cache.

› Cache misses are avoided.

Memory Performance of
Algorithms - Lecture 4

21

Iterative Mergesort

copy

Cache sizeCache miss

Memory Performance of
Algorithms - Lecture 4

22

Recursive Mergesort

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

8 2 9 4 5 3 1 6

1 2

3

4 5

6

7

Memory Performance of
Algorithms - Lecture 4

23

Recursive Mergesort

Cache size Cache miss
Cache hit

Memory Performance of
Algorithms - Lecture 4

24

Multi-mergesort
Cache size

sort sort
sort sort

Multi-merge

5

Memory Performance of
Algorithms - Lecture 4

25

sort in-place (if needed)

merge

merge

merge

merge

merge

merge

sort in-place

merge

1/2 cache size

Multi-Mergesort

Memory Performance of
Algorithms - Lecture 4

26

sort in-place (if needed)

merge

merge

merge

merge

merge

merge

sort in-place

merge

Multi-Mergesort Cache Behavior

1/2 cache size

Memory Performance of
Algorithms - Lecture 4

27

Quicksort
Cache size Cache miss

Cache hit

Memory Performance of
Algorithms - Lecture 4

28

Sorting Study from 1996

• Compared sorting algorithms
› Cache misses
› Instruction count

› Execution time

• The study is still valid today, because
the gap between processor speed and
memory speed is even larger.

Memory Performance of
Algorithms - Lecture 4

29

Algorithms

• Iterative mergesort
• Multi-mergesort
• Quicksort

Memory Performance of
Algorithms - Lecture 4

30

Cache Misses

Iterative merge

Quicksort
Multi-merge

0

2

4

6

8

10

12

10
00

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

12
80

00

25
60

00

51
20

00

10
24

000

20
48

000

40
96

000

Number of keys

ca
ch

e
m

is
se

s
pe

r
ke

y Quicksort
Iterative Merge
Multi-merge

6

Memory Performance of
Algorithms - Lecture 4

31

Instructions

Iterative merge

Quicksort

Multi-merge

0

50

100

150

200

250

300

350

10
00

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

12
80

00

25
60

00

51
20

00

10
24

00
0

20
48

00
0

40
96

00
0

number of keys

in
st

ru
ct

io
n

s
p

er
 k

ey

Quicksort
Iterative Merge
Multi-merge

Memory Performance of
Algorithms - Lecture 4

32

Execution Time

Iterative merge

Quicksort
Multi-merge

0

200

400

600

800

1000

1200

1000 2000 4000 8000 16000 32000 64000 128000 256000 512000 1E+06 2E+06 4E+06

number of keys

ex
ec

u
ti

o
n

 t
im

e
p

er
 k

ey
 i

n
 c

yc
le

s Quicksort
Iterative Merge
Multi-merge

Memory Performance of
Algorithms - Lecture 4

33

Notes on Memory
Performance

• Memory performance may matter.
• Tips

› Sacrifice instructions to get better cache
performance.

› Smaller memory footprint is good.
› Divide and conquer is good.
› Processing data into cache sized pieces is good.
› Fully utilize memory blocks if possible

• Short scans are good.
• Multiway trees are good.

Memory Performance of
Algorithms - Lecture 4

34

External Memory Sort

• Memory bottleneck even worse for disk
• If input too big to fit in main memory,

regular sorting algorithms are too slow
• Whole subject of external sorting

Memory Performance of
Algorithms - Lecture 4

35

Disks

• In-memory sorting uses random access
model of memory. Disks are sequential.

• A movable head over a rotating platter
• Reading sequentially fast
• Seeking to new location slow
• Sort time dominated by number of

seeks

Memory Performance of
Algorithms - Lecture 4

36

One external sort model

• With only 1 sequential access memory,
sorting takes Ω(N2)

• We’ll use a model with 4 disks.
• Each can be read concurrently
• Call disks A1, A2, B1, B2
• Say main memory can hold M elements

7

Memory Performance of
Algorithms - Lecture 4

37

A simple algorithm

• Data initially on A1
• Sort block of size M in memory, writing

first half to B1, second half to B2
• Now merge half of B1 and B2 onto A1,

and the other half to A2
• Blocks are now of size 2M
• Repeat for log(N/M) steps.

