Fundamentals

CSE 326
Data Structures
Lecture 2

Mathematical Background

- Today, we will review:
 - › Logs and exponents and series
 - > Asymptotics and order of magnitude notation
 - > Solving recursive equations

Fundamentals - Lecture 2

1 --t--- 0

Powers of 2

- Many of the numbers we use will be powers of 2
- Binary numbers (base 2) are easily represented in digital computers
 - each "bit" is a 0 or a 1
 - > 2⁰=1, 2¹=2, 2²=4, 2³=8, 2⁴=16, 2⁸=256, ...
 - › an n-bit wide field can hold 2ⁿ positive integers:
 - $0 \le k \le 2^{n-1}$

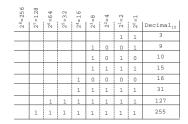
Fundamentals - Lecture 2

Unsigned binary numbers

- Each bit position represents a power of 2
- For unsigned numbers in a fixed width field
 - > the minimum value is 0
 - the maximum value is 2ⁿ-1, where n is the number of bits in the field
- · Fixed field widths determine many limits
 - \rightarrow 5 bits = 32 possible values (2⁵ = 32)
 - > 10 bits = 1024 possible values (2¹⁰ = 1024)

indamentals - Lecture 2

Binary and Decimal



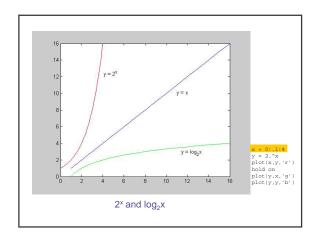
Fundamentals - Lecture 2

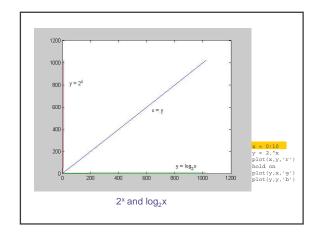
Logs and exponents

- Definition: $\log_2 x = y$ means $x = 2^y$
 - the log of x, base 2, is the value y that gives x = 2^y
 - $8 = 2^3$, so $\log_2 8 = 3$
 - \Rightarrow 65536= 2^{16} , so $\log_2 65536 = 16$
- Notice that log₂x tells you how many bits are needed to hold x values
 - \rightarrow 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
 - $\log_2 256 = 8$

Fundamentals - Lecture 2

1





Floor and Ceiling

X Floor function: the largest integer $\leq X$

|2.7| = 2 |-2.7| = -3 |2| = 2

X Ceiling function: the smallest integer $\geq X$

 $\lceil 2.3 \rceil = 3$ $\lceil -2.3 \rceil = -2$ $\lceil 2 \rceil = 2$

Fundamentals - Lecture 2

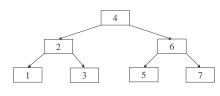
Facts about Floor and Ceiling

- 1. $X-1<\lfloor X\rfloor \le X$
- 2. $X \leq \lceil X \rceil < X+1$
- 3. |n/2| + [n/2] = n if n is an integer

Fundamentals - Lecture 2

Example: log₂x and tree depth

• 7 items in a binary tree, $3 = \lfloor \log_2 7 \rfloor + 1$ levels



Fundamentals - Lecture 2

Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- log AB = log A + log B
- Proof:
 - A=2log₂A and B=2log₂B
 - $\rightarrow \mathsf{AB} = 2^{\log_2 \mathsf{A}} \bullet 2^{\log_2 \mathsf{B}} = 2^{\log_2 \mathsf{A} + \log_2 \mathsf{B}}$
 - \rightarrow so $log_2AB = log_2A + log_2B$
 - › note: log AB ≠ log A•log B

Fundamentals - Lecture 2

12

Other log properties

- $\log A/B = \log A \log B$
- log (AB) = B log A
- $\log \log X < \log X < X$ for all X > 0
 - \rightarrow log log X = Y means $2^{2^{Y}} = X$
 - > log X grows slower than X
 - called a "sub-linear" function

Fundamentals - Lecture 2

13

A log is a log is a log

 Any base x log is equivalent to base 2 log within a constant factor

$$B = 2^{\log_2 B}$$
$$x = 2^{\log_2 x}$$

$$log_x B = log_x B$$

$$x^{log_x B} = B$$

$$(2^{log_2 x})^{log_x B} = 2^{log_2 B}$$

$$2^{\log_2 x \log_x B} = 2^{\log_2 B}$$
$$\log_2 x \log_x B = \log_2 B$$

$$\log_x B = \frac{\log_2 B}{\log_2 x}$$

Fundamentals - Lecture 2

14

Arithmetic Series

- $S(N) = 1 + 2 + ... + N = \sum_{i=1}^{N} i$
- The sum is
 - > S(1) = 1
 - S(2) = 1+2 = 3
 - \Rightarrow S(3) = 1+2+3 = 6

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

Why is this formula useful?

Fundamentals - Lecture 2

Algorithm Analysis

 Consider the following program segment:

• What is the value of x at the end?

Fundamentals - Lecture 2

40

Analyzing the Loop

 Total number of times x is incremented is executed =

$$1+2+3+...=\sum_{i=1}^{N}i=\frac{N(N+1)}{2}$$

- Congratulations You've just analyzed your first program!
 - Running time of the program is proportional to N(N+1)/2 for all N
 - > O(N²)

Fundamentals - Lecture 2

Other Important Series

• Sum of squares: $\sum_{i=1}^{N} i^2 = \frac{N(N+1)(2N+1)}{6} \approx \frac{N^3}{3}$ for large N

• Sum of exponents: $\sum_{i=1}^{N} i^k \approx \frac{N^{k+1}}{|k+1|}$ for large N and $k \neq -1$

• Geometric series: $\sum_{i=0}^{N} A^{i} = \frac{A^{N+1} - 1}{A - 1}$

Fundamentals - Lecture 2

entals - Lecture 2

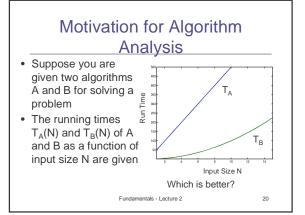
Mathematical Background

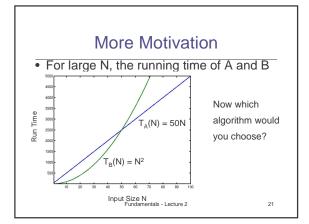
- Today, we will review:
 - > Logs and exponents and series
 - › Asymptotics and order of magnitude notation
 - > Solving recursive equations

Fundamentals - Lecture 2

s - Lecture 2

19



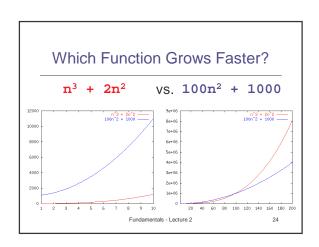


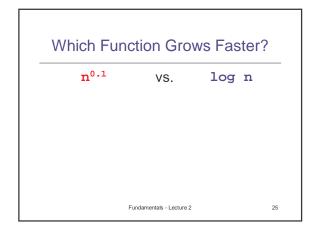
Asymptotic Behavior

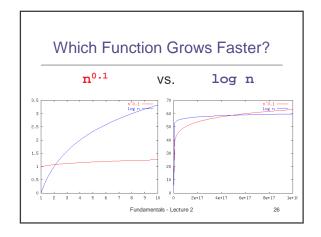
- Asymptotic behavior refers to what happens as as N $\to \infty$, regardless of what happens for small N
- Performance for small input sizes may matter in practice, if you are <u>sure</u> that <u>small</u> N will be common <u>forever</u>
- We will compare algorithms based on how they scale for large values of N

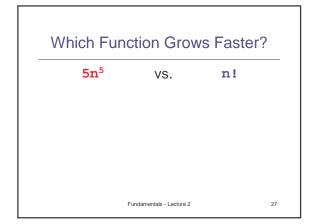
mentals - Lecture 2

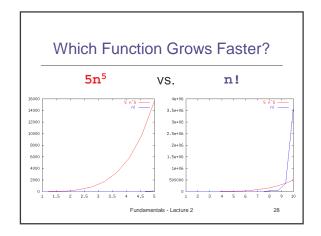
 $\frac{\text{Which Function Grows Faster?}}{n^3 + 2n^2} \quad \text{vs. } 100n^2 + 1000}$











Order Notation

- Mainly used to express upper bounds on time of algorithms. "n" is the size of the input.
- Examples
 - $3n^3+57n^2+34=O(n^3)$
 - \rightarrow 10000n + 10 n log₂ n = O(n log n)
 - > .00001 $n^2 \neq O(n \log n)$
- Order notation ignores constant factors and low order terms.

Fundamentals - Lecture 2

29

Big-O

- <u>Def</u>: f(n) = O(g(n)) if there exists positive constants c and n_0 such that for all $N > n_0$, $f(N) \le cg(N)$.
- In other words, for large enough n, g is always larger than f.
- So g is an upper bound. (f could be much smaller than g.)

Fundamentals - Lecture 2

$16n^3 \log_8(10n^2) + 100n^2 = O(n^3 \log(n))$ $16n^3 \log_8(10n^2) + 100n^2$ $\Rightarrow 16n^3 \log_8(10n^2)$ Eliminate $\Rightarrow n^3 \log_8(10n^2)$ low order $\Rightarrow n^3 \left\lceil \log_8(10) + \log_8(n^2) \right\rceil$ terms $\Rightarrow n^3 \log_8(10) + n^3 \log_8(n^2)$ Eliminate $\Rightarrow n^3 \log_8(n^2)$ constant $\Rightarrow n^3 2 \log_8(n)$ coefficients $\Rightarrow n^3 \log_8(n)$ $\Rightarrow n^3 \log_8(2) \log(n)$ $\Rightarrow n^3 \log(n)$ Fundamentals - Lecture 2 31

Some Basic Time Bounds

- Constant time is O(1)
- Logarithmic time is O(log n)
- Linear time is O(n)
- Quadratic time is 0(n2)
- Cubic time is O(n³)
- Polynomial time is O(nk) for some k.
- Exponential time is O(cⁿ) for some c > 1.

Fundamentals - Lecture 2

Other asymptotics

- Big-Omega: $f(n) = \Omega(g(n))$
 - $f(n) \ge c g(n)$ for some c > 0 & large enough n.
- Big-Theta: $f(n) = \Theta(g(n))$
 - \rightarrow f(n) = O(g(n)) and f(n) = Ω (g(n))
- Little-O: f(n) = o(g(n))
 - > For all c > 0 there is n_c such that for all $n > n_c$, $f(n) \le c g(n)$
 -) Limit formulation: $\lim_{n\to\infty} f(n)/g(n) = 0$

Fundamentals - Lecture 2

33

Conventions of Order Notation

Order notation is not symmetric: write $2n^2 + n = O(n^2)$

but never $O(n^2) = 2n^2 + n$

The expression O(f(n)) = O(g(n)) is equivalent to

f(n) = O(g(n))

The right-hand side is a "cruder" version of the left:

$$18n^2 = O(n^2) = O(n^3) = O(2^n)$$

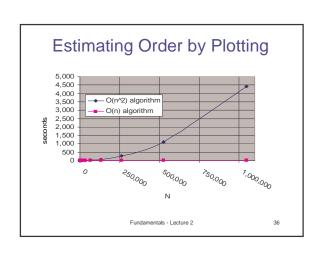
$$18n^2 = \Omega(n^2) = \Omega(n\log n) = \Omega(n)$$

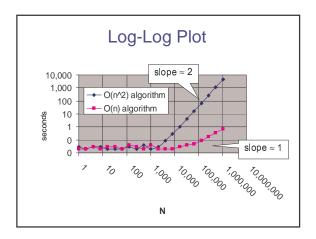
entals - Lecture 2

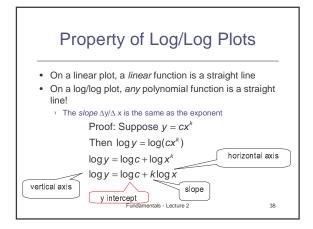
Kinds of Analysis

- Asymptotic uses order notation, ignores constant factors and low order terms.
- Upper bound vs. lower bound
- Worst case time bound valid for all inputs of length n.
- Average case time bound valid on average requires a distribution of inputs.
- Amortized worst case time averaged over a sequence of operations.
- Others best case, common case, cache miss

Fundamentals - Lecture 2







Mathematical Background

- Today, we will review:
 - > Logs and exponents and series
 - › Asymptotics and order of magnitude notation
 - > Solving recursive equations

Analyzing Recursive Programs

- 1. Express the running time T(n) as a recursive equation
- 2. Solve the recursive equation
 - For an upper-bound analysis, you can optionally simplify the equation to something larger
 - For a lower-bound analysis, you can optionally simplify the equation to something smaller

42

Binary Search

```
function bfind(x:integer, a[]:integer array, i,j:integer)
   if (j-i < 0) return -1;
    m := (i+j)/ 2;
    if (x = a[m]) return m;
    if (x < a[m]) then
        return bfind(x, a, i, m-1);
       return bfind(x, a, m+1, j); }
Call bfind(x,a,0,n-1) to get the result of binary search
```

What is the worst-case upper bound?

Okay, let's *prove* it is $\theta(\log n)$...

Fundamentals - Lecture 2

41

Binary Search

```
function bfind(x:integer, a[]:integer array, i,j:integer)
   if (j-i < 0) return -1;
    ir (j-1 < 0) return -1;
m := (i+j)/ 2;
if (x = a[m]) return m;
if (x < a[m]) then</pre>
        return bfind(x, a, i, m-1);
   else return bfind(x, a, m+1, j); }
  Introduce some constants..
       b = time needed for base case
        c = time needed to get ready to do a recursive call
        n = j-i+1 is the size of the subproblem
   Running time T(n) satisfies: T(1) \le b
                                        T(n) \le T(n/2) + c
```

Fundamentals - Lecture 2

Solving Recursive Equation (by Repeated Substitution)

```
\begin{split} T(n) &\leq T(n/2) + c & \text{Recurrence} \\ &\leq T(n/4) + c + c & T(n/2) \leq T(n/4) + c \\ &\leq T(n/8) + c + c + c & T(n/4) \leq T(n/8) + c \\ T(n) &\leq T(n/2^k) + kc & \text{General form} \\ T(n) &\leq T(n/2^{\log_2 n}) + c\log_2 n & \text{Let } k = \log_2 n \\ &= T(n/n) + c\log_2 n \\ &= T(1) + c\log_2 n = b + c\log_2 n = O(\log n) \end{split}
```

Solving Recursive Equations by Induction

- Repeated substitution and telescoping construct the solution
- If you know the closed form solution, you can validate it by ordinary induction
- For the induction, may want to increase n by a multiple (2n) rather than by n+1

Fundamentals - Lecture 2

. . .

Inductive Proof

```
\begin{aligned} & \text{Base case} \\ & T(1) \leq b = b + \text{clog}_2 1 \\ & \text{Inductive assumption} \\ & T(n) \leq b + \text{clog}_2 n \\ & \text{Inductive step} \\ & T(2n) \leq T(n) + c \\ & \leq b + \text{clog}_2 n + c \\ & \leq b + \text{clog}_2 n + \text{clog}_2 2 \\ & \leq b + c(\text{log}_2 n + \text{log}_2 2) \\ & \leq b + \text{clog}_2 2 n \end{aligned}
```

Fundamentals - Lecture 2

45