Fundamentals

CSE 326
Data Structures
Lecture 2

Mathematical Background

* Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations

Fundamentals - Lecture 2 2

Powers of 2

e Many of the numbers we use will be powers
of 2

e Binary numbers (base 2) are easily
represented in digital computers
> each"bit"isaOoral
> 20=1, 21=2, 22=4, 23=8, 24=16, 28=256, ...
> an n-bit wide field can hold 2" positive integers:

« Osks2n1

Fundamentals - Lecture 2 3

Unsigned binary numbers

» Each bit position represents a power of 2
» For unsigned numbers in a fixed width field
> the minimum value is 0

> the maximum value is 2"-1, where n is the number
of bits in the field

 Fixed field widths determine many limits
> 5 bits = 32 possible values (2° = 32)
> 10 bits = 1024 possible values (21° = 1024)

Fundamentals - Lecture 2 4

Binary and Decimal

256
128
64
32
16

8
4
2
1

Deci mal 4,

28
27
26
25
24
23
22

10
15
16
31
127

[N N L S A R
e e |ole oo

el lo|k (e fo|m]2
A R R 1A N S N P P

-
-
[(S [

Fundamentals - Lecture 2 5

Logs and exponents

* Definition: log, x =y means x = 2¥

> the log of x, base 2, is the value y that gives x
=2Y

> 8=2%s0log,8=3
> 65536= 216, so l0g,65536 = 16

* Notice that log,x tells you how many bits
are needed to hold x values
> 8 bits holds 256 numbers: 0 to 28-1 = 0 to 255
> log,256 = 8

Fundamentals - Lecture 2 6

1200

1000
goof v=2
600 | =
¥
400
x = 0: 1
200 y = 2.4
pl ot (x
¥ = lng,x hol d on
ot (y,
% 200 400 600 600 1000 1200 g, ot E ;
X
2xand log,x

14
2 £42
1n =%
8
B
4 e e
L e x=g e
2 s plot(x,y," r')
~ hol d o .
% 3 7 5 5 I E} ot w ;: i ;
2xand log,x
Floor and Ceiling
LXJ Floor function: the largest integer < X
|27]=2 |-27]=-3 [2]=2
|7X—‘ Ceiling function: the smallest integer > X
[23]=3 [-23|==2 [2]=2
Fundamentals - Lecture 2 9

Facts about Floor and Ceiling

1. X-1<[X]<X
2. X<[X]<x+1
3. [n/2|+[n/2]=n ifnisaninteger

Fundamentals - Lecture 2 10

Example: log,x and tree depth

- 7items in a binary tree, 3 = Llog,7+1 levels

Fundamentals - Lecture 2 1

Properties of logs (of the
mathematical kind)

* We will assume logs to base 2 unless
specified otherwise

e logAB =log A + log B
* Proof:
> A=2l09,A and B=2'09,B
> AB = 2I092A. 2IogZB = 2I092A+Iogzs

> s0 log,AB = log,A + log,B

> note: log AB # log Aslog B

Fundamentals - Lecture 2 12

Other log properties

* logA/B=logA—logB

e log (AB) =B log A

* loglog X<log X< Xforall X>0
> log log X = Y means 2 =X

> log X grows slower than X
« called a “sub-linear” function

Fundamentals - Lecture 2

Arithmetic Series

. S(N):1+2+.4.+N:2N:i
i=1
e The sumis
> S(1)=1
> S(2)=1+2=3
> S(3)=1+2+3=6
. zN:i:N(N+l)
2

Why is this formula useful?
i=1

Fundamentals - Lecture 2

Alogisalogis alog

» Any base x log is equivalent to base 2 log
within a constant factor
log,B =log,B
x°9E =B
(Z\OQZX)\OQ,(E - 2Iang

2l0g2x109,8 _ plog:B

B= 2\0925

X = gz

log,x log,B =log,B
log,B

log,x
Fundamentals - Lecture 2

log,B =

14

Algorithm Analysis

e Consider the following program

segment:

x:= 0;

for i =1 to Ndo
for j =1toi do
X 1= x + 1;

* What is the value of x at the end?

Fundamentals - Lecture 2

16

Analyzing the Loop

» Total number of times X is incremented
is executed =

N
1+42+3+..=)i= N(N2+1)
i=1

» Congratulations - You've just analyzed
your first program!

> Running time of the program is proportional
to N(N+1)/2 for all N

> O(N?)

Fundamentals - Lecture 2

e Sum of exponents:

e Geometric series:

Other Important Series

N, N(N+D)(N+1) _ N?
« Sum of squares: ZI2:%=?WIH99N
i=1

k+1

N
i :N—forlargeN andk #-1
5 |k+1]

N

N+ _
A _AT-1
- A-1

Fundamentals - Lecture 2 18

Mathematical Background

» Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations

Fundamentals - Lecture 2 19

Motivation for Algorithm
Analysis

Suppose you are
given two algorithms
A and B for solving a
problem

The running times
Ta(N) and Tg(N) of A
and B as a function of
input size N are given

Run Time

Input Size N
Which is better?

Fundamentals - Lecture 2 20

More Motivation

 For large N, the running time of A and B

o
oo .
oo Now which
(]
E #o0 TA(N) = 50N algorithm would
o
2 you choose?
150
1o Tg(N) = N2
0
e % w e W W W
Input Size N

Fundamentals - Lecture 2 21

Asymptotic Behavior

« Asymptotic behavior refers to what
happens as as N — o, regardless of
what happens for small N

» Performance for small input sizes may
matter in practice, if you are sure that
small N will be common forever

* We will compare algorithms based on
how they scale for large values of N

Fundamentals - Lecture 2 22

Which Function Grows Faster?

nd + 2n2 vs. 100n? + 1000

Fundamentals - Lecture 2 23

12000

10000

8000

6000

4000

2000

Which Function Grows Faster?

n3 + 2n2 vs. 100n2 + 1000

5+ 2z T ee
100n° + 1000 — s 100n°2 + 1000 —

9
8
K
6
Se+06.
4
3
2
1

1 2 3 4 5 s 7 8 9 10 20 40 60 B0 100 120 140 160 180 200

Fundamentals - Lecture 2 24

Which Function Grows Faster?

no-1 VS. log n

Fundamentals - Lecture 2 25

Which Function Grows Faster?

n"0.1 ——
ﬁ
0
1 2 3 4 5 3 7 8 9 10 0 2e+17 de+17 Be+17 Be+17 let:
Fundamentals - Lecture 2 26

Which Function Grows Faster?

5n° VS. n!

Fundamentals - Lecture 2 27

Which Function Grows Faster?

5n° VS. n!

16000 - 42406

n
14000 3.5e+06

.

0

o
1 15 2 25 3 35 4 45 5 1 2z 3 4 s & 71 8 3 10

Fundamentals - Lecture 2 28

Order Notation

* Mainly used to express upper bounds on time
of algorithms. “n” is the size of the input.

« Examples
> 3n3+57n2+34=0(n3)
> 10000n + 10 nlog, n = O(n log n)
> .00001 n2 # O(n log n)

< Order notation ignores constant factors and
low order terms.

Fundamentals - Lecture 2 29

Big-O

e Def: f(n) = O(g(n)) if there exists
positive constants ¢ and n, such that for
all N > ng, f(N) < cg(N).

« In other words, for large enough n, g is
always larger than f.

e So g is an upper bound. (f could be
much smaller than g.)

Fundamentals - Lecture 2 30

16n° log, (10n?) +100n° = O(n®log(n))

16n°log, (10n°) +100n°

= 16n° log,(10n?)

e)
terms = n°[log, (10) +log, (n*) |
L. = n’l0g, (10) + n*logy(n*)
Eliminate — r®log, ()
constant _ r#2log, (1)
coefficients s o
= n°log,(n)
= n’log,(2) log(n)
= n’log(n)
Fundamentals - Lecture 2 31

Some Basic Time Bounds

» Constant time is O(1)

 Logarithmic time is O(log n)

e Linear time is O(n)

¢ Quadratic time is 0(n?)

e Cubic time is O(n%)

 Polynomial time is O(n¥) for some k.

» Exponential time is O(c") for some ¢ > 1.

Fundamentals - Lecture 2 32

Other asymptotics

¢ Big-Omega: f(n) = Q(g(n))

> f(n) > c g(n) for some c > 0 & large enough n.
* Big-Theta: f(n) = ©(g(n))

> f(n) = O(g(n)) and f(n) = Q(g(n))
« Little-O: f(n) = o(g(n))

> Forall ¢ >0 there is n, such that for all n > n,

f(n) <c g(n)
> Limit formulation: lim,__f(n)/g(n)=0

Fundamentals - Lecture 2 33

Conventions of Order Notation

Order notation is not symmetric: write 2n® +n =0(n?)
but never O(n?) = 2n* +n

The expression O(f(n)) =O(g(n)) is equivalent to
f(n) =0(g(n))

The right-hand side is a "cruder" version of the left:
18n? =0(n%) =0(n*) =0(2")
18n? = Q(n?) = Q(nlogn) = Q(n)

Fundamentals - Lecture 2 34

Kinds of Analysis

« Asymptotic — uses order notation, ignores constant
factors and low order terms.

* Upper bound vs. lower bound
« Worst case — time bound valid for all inputs of length n.

« Average case — time bound valid on average — requires
a distribution of inputs.

= Amortized — worst case time averaged over a sequence
of operations.
« Others — best case, common case, cache miss

Fundamentals - Lecture 2 35

Estimating Order by Plotting

5,000 ‘ |
4,500

4,000 ‘ ‘ ol
3,500 +|—— O(n"2) algorithm}
3,000 4~ —=— O(n) algorithm |
2,500

2,000
1,500
1,000 P

500
o e

seconds

o 25 o, < <
0, 0 0, :
% % %, %

Fundamentals - Lecture 2 36

Log-Log Plot

1,000 - B
100 H —e— O(M2) algorithm \ /
e 10 —=— O(n) algorithm /’
K N
8 1 7
@ A
(7] e —
0 M fu <‘Fﬁ slope =1

Property of Log/Log Plots

* On alinear plot, a linear function is a straight line

« On alog/log plot, any polynomial function is a straight

line!
> The slope Ay/A x is the same as the exponent

Proof: Suppose y = cx*
Then logy =log(cx*)

logy =logc +klogx
“venical axis ‘g

Fundamentals - Lecture 2

38

Mathematical Background

* Today, we will review:
> Logs and exponents and series
> Asymptotics and order of magnitude notation
> Solving recursive equations

Fundamentals - Lecture 2 39

Analyzing Recursive
Programs

1. Express the running time T(n) as a
recursive equation

2. Solve the recursive equation

« For an upper-bound analysis, you can
optionally simplify the equation to
something larger

¢ For a lower-bound analysis, you can
optionally simplify the equation to
something smaller

Fundamentals - Lecture 2

40

Binary Search

function bfind(x:integer, a[]:integer array, i,j:integer)
{ if (j-i <0) return -1;
m:= (i+)/ 2
if (x =a[n) return m
if (x <a[n) then
return bfind(x, a, i, m1);
el se
return bfind(x, a, ml, j); }
Call bfind(x,a,0,n-1) to get the result of binary search

What is the worst-case upper bound?
Okay, let’s proveitis 6(log 7)...

Fundamentals - Lecture 2 41

Binary Search

function bfind(x:integer, a[]:integer array, i,j:integer)
{ if (j-i <0) return -1;
m:i=(i4) 2
if (x=a[n) return m
if (x <a[n]) then
return bfind(x, a i, m1);
el se
return bfind(x, a ml, j); }
Introduce some constants...
b = time needed for base case
c = time needed to get ready to do a recursive call

n = j-i+1 is the size of the subproblem

Running time T(n) satisfies: T(1)<b
T(n)<T(n/2)+c

Fundamentals - Lecture 2

a2

Solving Recursive Equation
(by Repeated Substitution)

Solving Recursive Equations
by Induction

T(n)<T(n/2) +c Recurrence
<T(n/4)+c+c T(n/2) < T(n/4) + ¢
<T(n/8)+c+c+c T(n/4)<T(n/8)+c

T(n) < T(n/2*)+kc General form

T(n) < T(n/2"°%") +clog,n Letk =log,n
=T(n/n) +clog,n

=T(1) +clog,n =b +clog,n = O(logn)

Fundamentals - Lecture 2 43

» Repeated substitution and telescoping

construct the solution

« If you know the closed form solution,

you can validate it by ordinary induction

 For the induction, may want to increase

n by a multiple (2n) rather than by n+1

Fundamentals - Lecture 2 44

Inductive Proof

Base case

T(1)<b=b+clog,1

Inductive assumption

T(n)<b+clog,n

Inductive step

T(2n)<T(n)+c
<b+clog,n+c
<b+clog,n+clog,2
<b+c(log,n+log,2)
<b+clog,2n

Fundamentals - Lecture 2 45

